Conference Contribution

On Resilience of Multicommodity Dynamical Flow Networks

Gustav Nilsson, Giacomo Como, Enrico Lovisari


Dynamical flow networks with heterogeneous routing are analyzed in terms of stability and resilience to perturbations. Particles flow through the network and, at each junction, decide which downstream link to take on the basis of the local state of the network. Differently from single-commodity scenarios, particles belong to different classes, or commodities, with different origins and destinations, each reacting differently to the observed state of the network. As such, the commodities compete for the shared resource that is the flow capacity of each link of the network. This implies that, in contrast to the single-commodity case, the resulting dynamical system is not monotone, hence harder to analyze. It is shown that, in an acyclic network, when a feasible globally asymptotically stable aggregate equilibrium exists, then each commodity also admits a unique equilibrium. In addition, a sufficient condition for stability is provided. Finally, it is shown that, differently from the single-commodity case, when this condition is not satisfied, the possible unique equilibrium may be arbitrarily fragile to perturbations of the network.


Dynamical flow networks, multicommodity flows, resilience, distributed routing, heterogeneous routing


In 53rd IEEE Conference on Decision and Control, Los Angeles, CA, December 2014.

Download full document