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Linear Systems, 2019 - Lecture 3

Controllability

Observability

Controller and Observer Forms

Balanced Realizations

Rugh, chapters 9,13, 14 (only pp 247-249) and (25)
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Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

any state x0 can be made an equilibrium

any state trajectory x(t) can be obtained

any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the following
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Controllability

The state equation

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

is called controllable on (t0, tf ), if for any x0, there exists u(t) such
that x(tf ) = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:

“for x0 = 0 and any x1, there exists u(t) such that x(tf ) = x1”

(“Controllable from origin”)

The audience is thinking!

Hint: x(tf ) = Φ(tf , t0)x(t0) +
∫ tf
t0 Φ(tf , t)B(t)u(t)dt
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Controllability Gramian

The matrix function

W (t0, tf ) =
∫ tf

t0
Φ(t0, t)B(t)B(t)TΦ(t0, t)Tdt

is called the controllability Gramian.

A main result is the following
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Th.1 Controllability Criterion (Rugh 9.2)

The state equation is controllable on (t0, tf ) if and only if the
controllability Gramian W (t0, tf ) is invertible.

Remark: We will see later (Lec.6) that the minimal (squared) control
energy, defined by ‖u‖2 :=

∫ tf
t0 |u|

2dt, needed to move from
x(t0) = x0 to x(tf ) = 0 equals xT0 W (t0, tf )−1x0.
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Proof of Th.1

i) Suppose first W is invertible. Given x0 the control signal

u(t) = −BTΦT (t0, t)W−1(t0, tf )x0

will give x(tf ) = 0 (check!). Hence the system is controllable.

ii) Suppose instead the system is controllable. Want to show W
invertible, i.e. that Wx0 = 0 implies x0 = 0.

Find u so 0 = Φx0 +
∫

ΦBudt, i.e. x0 = −
∫ tf
t0 Φ(t0, t)B(t)u(t)dt

xT0 x0 = −
∫ tf

t0
xT0 Φ(t0, t)B(t)︸ ︷︷ ︸

:=z(t)

u(t)dt

But this shows x0 = 0 since

‖z(t)‖2 =
∫ tf

t0
xT0 Φ(t0, t)B(t)BT (t)ΦT (t0, t)x0dt = xT0 Wx0 = 0
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Th2. LTI Controllability Test - (Rugh 9.5)

The following four conditions are equivalent:

(i) The system ẋ(t) = Ax(t) +Bu(t) is controllable.

(ii) rank[B AB A2B . . . An−1B] = n.

(iii) λ ∈ C, pTA = λpT , pTB = 0 ⇒ p = 0.

(iv) rank [λI −A B] = n ∀λ ∈ C.

The conditions (iii) and (iv) are called the PBH test
(Popov-Belevitch-Hautus), see p221.

Notation: C(A,B) := [B AB A2B . . . An−1B]
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Th.3 LTI Uncontrollable System Decomposition

Suppose that 0 < q < n and

rank
[
B AB A2B . . . An−1B

]
= q < n

Then there exists an invertible P ∈ Rn×n such that

P−1AP =
[
Â11 Â12
0 Â22

]
, P−1B =

[
B̂11
0

]

where Â11 is q × q, B̂11 is q ×m, and

rank[B̂11 Â11B̂11 . . . Â
q−1
11 B11] = q
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Range and Null Spaces

Range space (Image) of M : X → Y :

R(M) = {Mx : x ∈ X} ⊂ Y

Null space (Kernal) of M : X → Y :

N (M) = {x : Mx = 0} ⊂ X

Example:

R
([

1 2
0 0

])
=

{
α

[
1
0

]
: α ∈ R

}

N
([

1 2
0 0

])
=

{
α

[
2
−1

]
: α ∈ R

}
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Cayley-Hamilton Theorem

Let p(s) := det(sI −A) be the char. polynomial of the square matrix
A, then

p(A) = 0

This means that An, where n is the size of A, can be written as a
linear combination of Ak of lower order

An = −an−1A
n−1 − . . .− a1A− a0I
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Proof Th. 3

Use the n× n matrix P = [P1 P2] where P1 is an n× q matrix with
lin. indep. columns taken from C(A,B) and P2 is any n× (n− q)
matrix making P invertible. Introduce the notation

P−1 =
[
M
N

]
, then

[
M
N

]
[P1 P2] =

[
Iq 0
0 In−q

]
. Note NP1 = 0.

R(B) ⊂ R(P1)⇒ NB = 0⇒ B̂ = P−1B =
[
M
N

]
B =

[
B̂1
0

]

R(AP1) ⊂ R(P1)⇒ NAP1 = 0⇒ Â = P−1AP =
[
M
N

]
AP =

[
Â11 Â12
0 Â22

]

rank C(Â11, B̂1) = rank C(A,B) = q
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Proof of Th. 2

(i)⇒ (ii) If (ii) fails, then after a coordinate change as in Theorem 3,
x̂2 is unaffected by the input, so (i) fails.

(ii)⇒ (i) If pTW (t0, tf )p = 0 for some p 6= 0, then∫ tf

t0
pT eA(t0−t)BBT eA

T (t0−t)pdt = 0

pT eA(t0−t)B = 0 ∀t ∈ [t0, tf ]

Differentiation with respect to t at t = t0, gives

pT [B AB . . . An−1B] = 0,

so (ii) fails.
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Proof Th2 continued

(ii)⇒ (iii) If iii fails, i.e. pTA = λpT and pTB = 0 for p 6= 0
then pT [B AB . . . An−1B] = 0, so (ii) fails.

(iii)⇒ (ii) If rank[B . . . An−1B] = q < n then let P be defined as
in Theorem 3 and let p2

T Â22 = λp2
T and pT = [0 p2

T ]P−1. Then

pTB = [0 p2
T ]
[
B̂11
0

]
= 0

pTA = [0 p2
T ]
[
Â11 Â12
0 Â22

]
P−1 = λ[0 p2

T ]P−1 = λpT

so (iii) fails.

(iv)⇔
{
pT [λ−A B] = 0 ⇒ p = 0

}
⇔ (iii)
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Tank example - controllable?

ẋ =
[
−1 0
0 −1

]
x+

[
1
1

]
u

ẋ =
[
−1 0
0 −2

]
x+

[
1
1

]
u
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Tank example - controllable?

ẋ =

−1 0 0
0 −1 0
0 0 −1

x+

1 0
1 1
0 1

u
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Example - Single Input Diagonal Systems

For which λi, bi is this system controllable?

ẋ =


λ1 0

λ2
. . .

0 λn

x+


b1
b2
...
bn

u
Method 1: When is the controllability matrix invertible?

C(A,B) =


b1 b1λ1 b1λ

2
1 . . . b1λ

n−1
1

b2 b2λ2 b2λ
2
2 . . . b2λ

n−1
2

...
bn bnλn bnλ

2
n . . . bnλ

n−1
n


After some work: When all λi are distinct and all bi nonzero.

Method 2: The PBH-test gives you this result immediately!
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LTV Reachability

The equation

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = 0

is called reachable on (t0, tf ), if for any xf , there exists u(t) such that
x(tf ) = xf .

The matrix function

Wr(t0, tf ) =
∫ tf

t0
Φ(tf , t)B(t)B(t)TΦ(tf , t)Tdt

= Φ(tf , t0)W (t0, tf )Φ(tf , t0)T

is called the reachability Gramian.

Continuous time controllability and reachability are equivalent
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LTV Observability

The equation

ẋ(t) = A(t)x(t), x(t0) = x0

y(t) = C(t)x(t)

is called observable on [t0, tf ] if any initial state x0 is uniquely
determined by the output y(t) for t ∈ [t0, tf ].

It is called reconstructable on [t0, tf ] if the state x(tf ) is uniquely
determined by the output y(t) for t ∈ [t0, tf ].

In continuous time, observability and reconstrubality are equivalent
(why?)
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Observability Gramian

The matrix function

M(t0, tf ) =
∫ tf

t0
Φ(t, t0)TC(t)TC(t)Φ(t, t0)dt

is called the observability Gramian of the system

ẋ(t) = A(t)x(t)
y(t) = C(t)x(t)

Remark: Operator interpretation (see later)

M(t0, tf ) = L∗L

where L : Rn → Lm2 (t0, tf ) with

(Lx0)(t) = C(t)Φ(t, t0)x0, x0 ∈ Rn
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Theorem 4 (Rugh 9.8) - Observability Criterion

The following two conditions are equivalent

(i) The system {A(t), C(t)} is observable on [t0, tf ].
(ii) M(t0, tf ) > 0
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Th. 5 (Rugh 9.11) - LTI Observability

The following four conditions are equivalent:

(i) The system ẋ(t) = Ax(t), y(t) = Cx(t) is observable.

(ii) rank


C
CA

...
CAn−1

 = n.

(iii) λ ∈ C : Ap = λp, Cp = 0 ⇒ p = 0

(iv) rank
[
λI −A
C

]
= n ∀λ ∈ C.
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Theorem 6 - Unobservable State Equation

Suppose that rank


C
CA

...
CAn−1

 = l < n

Then there exists an invertible Q ∈ Rn×n such that

Q−1AQ =
[
Â11 0
Â21 Â22

]
, CQ =

[
Ĉ11 0

]

where Â11 is l × l, Ĉ11 is p× l, and rank


Ĉ11

Ĉ11Â11
...

Ĉ11Â
l−1
11

 = l.
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LTI Controller Canonical Form - Single Input

Suppose (A, b) is controllable. There is an invertible P such that a
state transformation will bring the system to the form

PAP−1 = Ac =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−a0 −a1 . . . −an−1

 , PB = Bc =


0
...
0
1


det(sI −A) = sn + an−1s

n−1 + . . .+ a1s+ a0
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Proof

Introduce some notation for C−1(A, b):M1
...
Mn

 :=
[
b Ab . . . An−1b

]−1
⇒ MnA

kb = 0, k = 0, . . . , n− 2
MnA

n−1b = 1

We can use the transformation z = Px where

P =


Mn

MnA
...

MnA
n−1


That P is invertible follows from calculation of PC (the new
controllability matrix)
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Proof

PC =


Mn

MnA
...

MnA
n−1


[
b Ab . . . An−1b

]
=


0 . . . 0 1
...

... . . . ?
0 1 ? ?
1 ? . . . ?



PA =


MnA
MnA

2

...
MnA

n

 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−a0 −a1 . . . −an−1




Mn

MnA
...

MnA
n−1

 = AcP

PB =


Mnb
MnAb

...
MnA

n−1b

 =


0
...
0
1

 = Bc
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Controllability Index

To construct the corresponding controller form when we have multiple
inputs (m > 1) we need the following

Definition: Let B = [B1 . . . Bm]. For j = 1, . . . ,m, the
controllability index ρj is the smallest integer such that AρjBj is
linearly dependent on the column vectors occuring to the left of it in the
controllability matrix[

B AB . . . An−1B
]
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Notation for Controller Form

Given a contr. system {A,B}, with controllability indices ρ1, . . . ρm,
define

M =

M1
...
Mn

 :=
[
B1 AB1 . . . A

ρ1−1B1 . . . Bm . . . Aρm−1Bm
]−1

P =

P1
...
Pm

 , Pi =


Mρ1+···+ρi

Mρ1+···+ρiA
...

Mρ1+···+ρiA
ρi−1


Notice that it is rather easy to write Matlab code for this.

See Rugh 13.9 for the proof of the following result
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Theorem 7, Controller Form - Multiple Inputs

The transformation z = Px gives (Ac, Bc) with

Ac =



1
. . .

1
? . . . . . . ? ? . . . . . . ? ? . . . . . . ?

1
. . .

1
? . . . . . . ? ? . . . . . . ? ? . . . . . . ?


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Theorem 7, Controller Form - Multiple Inputs

Bc =



1 ? . . . ?

0 1 ? ?

0 . . . 0 1


The block sizes equal the controllability indices ρi.

If B is not full rank, Bc will have a stair-case form.
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LTI Feedback & Eigenvalue Assignment (Rugh 14.9)

Using the controller form it is now easy to prove

Suppose (A,B) is controllable. Given a monic polynomial p(s) there
is a feedback control u = −Kx so that

det(sI −A−BK) = p(s).

Proof We can get rid of the ? elements in Bc by writing Bc = B̃cT
where T is an upper triangular matrix with right inverse. Introduce the
new control signal ũ = Tu. By state feedback we can now change
each line of stars in Ac. We can for instance transform Ac to a
controller form with one big block, with the last row containing the
coefficients of p(s).
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Definition - Observability Index

Let CT = [C1
T . . . Cp

T ]T . For j = 1, . . . , p, the observability index
ηj is the smallest integer such that CjAηj is linearly dependent on the
row vectors occuring above it in the observability matrix

C
CA

...
CAn−1


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Theorem 8 -Observer form

Suppose (C,A) is observable. Then there is a transformation
z = Px, to the form ż = Aoz, y = Coz with

Ao = transpose of the form for Ac above

Co = transpose of the form for Bc above

The size of the blocks equals the observability indices ηj .
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Theorem 9 - Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian
Wr(−∞, 0) equals the unique solution P to the matrix equation

PAT +AP = −BBT

Similarly, the observability Gramian M(0,∞) equals the solution Q of

QA+ATQ = −CTC
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Proof of Theorem 9

Let P = Wr(−∞, 0) =
∫∞

0 eAσBBT eA
T σdσ. Then

PAT +AP =
∫ ∞

0

∂

∂σ

(
eAσBBT eA

T σ
)
dσ

=
[
eAσBBT eA

T σ
]∞

0

= −BBT

The linear operator (Lyapunov 1893)

L(P ) = AP + PAT

hasR(L) = Rn×n so N (L) = {0} and the solution P is unique.

The equation for the observability Gramian is obtained by replacing
A,B with AT , CT .
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Balanced Realization

For the stable system (A,B,C), with Gramians P and Q, the variable
transformation x̂ = Tx gives

P̂ = TPT ∗

Q̂ = T−∗QT−1

Choosing R, T , unitary U and diagonal Σ from

Q = R∗R (Choleski Factorisation)

RPR∗ = UΣ2U∗ (Singular Value Decomposition)

T = Σ−1/2U∗R

gives (check)

P̂ = Q̂ = Σ

The corresponding realization (Â, B̂, Ĉ) is called a balanced
realization of the system (A,B,C).

35 / 43



LionSealWhite

Truncated Balanced Realization

Let the states be sorted such that Σ is decreasing. The diagonal
elements of Σ measure “how controllable and observable” the
corresponding states are. With

Â =
[
Â11 Â12
Â21 Â22

]
, B̂ =

[
B̂1
B̂2

]
Ĉ =

[
Ĉ1 Ĉ2

]

Σ =
[
Σ1 0
0 Σ2

]

the system (Â11, B̂1, Ĉ1) is called a truncated balanced realization of
the system (A,B,C).

If Σ1 >> Σ2 the truncated system is probably a good approximation.
Choose either D = 0 or to get correct DC-gain.
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Example (done with balreal in MATLAB)

C(sI −A)−1B = 1− s
s6 + 3s5 + 5s4 + 7s3 + 5s2 + 3s+ 1

Σ = diag{1.98, 1.92, 0.75, 0.33, 0.15, 0.0045}

Ĉ(sI − Â)−1B̂ = 0.20s2 − 0.44s+ 0.23
s3 + 0.44s2 + 0.66s+ 0.17
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Bonus: Full Kalman Decomposition

Simultaneous controller and observer decomposition

Use P =
[
P1 P2 P3 P4

]
where Pi has ni columns with

Columns of
[
P1 P2

]
basis forR(C)

Columns of P2 basis forR(C) ∩N (O)
Columns of

[
P2 P4

]
basis for N (O)

Columns of P3 chosen so P invertible.

Â =


Â11 0 Â13 0
Â21 Â22 Â23 Â24
0 0 Â33 0
0 0 Â43 Â44

 , B̂ =


B̂1
B̂2
0
0


C =

[
Ĉ1 0 Ĉ3 0

]
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Kalman’s Decomposition Theorem

The system (Â11, B̂1, Ĉ1) is both controllable and observable.

It is of minimal order, n1

The transfer function equals Ĉ1(sI − Â11)−1B̂1.
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Bonus: More on Controllability

A,B is controllable if and only if

The only C for which C(sI −A)−1B = 0, ∀s is C = 0

A,C is observable if and only if

The only B for which C(sI −A)−1B = 0, ∀s is B = 0

Proof: 0 = C(sI −A)−1B =
∞∑
k=0

CAkB/sk+1 ⇔ 0 = CAkB, ∀k ⇔

0 = C
[
B AB . . . An−1B

]
⇔ 0 =


C
CA

...
CAn−1

B
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Bonus: Parallel Systems

Let G1(s) = C1(sI −A1)−1B1 and G2(s) = C2(sI −A2)−1B2

If A1 and A2 have no common eigenvalues then

G1(s) +G2(s) ≡ 0 =⇒ G1(s) = G2(s) = 0

Proof: Can assume both systems are minimal. From

G1(s) +G2(s) =
[
C1 C2

] [sI −A1 0
0 s−A2

]−1 [
B1
B2

]
= 0

and the fact that
[
C1 C2

]
,

[
A1 0
0 A2

]
is observable (PBH-test), the

previous frame shows that

[
B1
B2

]
=
[
0
0

]
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Bonus: System Zeros (SISO)

Assume (A, b, c) minimal and that z is not an eigenvalue of A.

Then the following are equivalent

G(z) = c(zI −A)−1b+ d = 0
With u0 arbitrary and x0 := (zI −A)−1bu0 we have[

zI −A −b
c d

] [
x0
u0

]
= 0

The following matrix looses rank[
zI −A −b
c d

]
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Bonus: Series Connection SISO

Given two minimal systems ni(s)/di(s) = ci(sI −Ai)−1bi, i = 1, 2

Then the series connection n2(s)
d2(s)

n1(s)
d1(s) is

uncontrollable⇐⇒ there is z so n1(z) = d2(z) = 0
unobservable⇐⇒ there is z so n2(z) = d1(z) = 0

Proof:

Controllable, check when rank
[
zI −A1 0 b1
−b2c1 zI −A2 0

]
≤ n

Observable, check when rank

zI −A1 0
−b2c1 zI −A2

0 c2

 ≤ n
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