Linear Systems, 2019 - Lecture 3

@ Controllability

@ Observability

@ Controller and Observer Forms
@ Balanced Realizations

Rugh, chapters 9,13, 14 (only pp 247-249) and (25)
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Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

@ any state x¢ can be made an equilibrium
@ any state trajectory x(t) can be obtained
@ any output trajectory y(¢) can be obtained

The most fruitful definition has instead turned out to be the following
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Controllability

The state equation
i(t) = A@)z(t) + B(t)u(t), x(to) =zo

is called controllable on (to, t ), if for any xg, there exists u(t) such
that (ty) = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:
“for 9 = 0 and any x1, there exists u(t) such that z(t;) = x1"

(“Controllable from origin”)

’ The audience is thinking! ‘

Hint: 2(t7) = ®(t4, to)a(to) + fi! B(ts, t)B(t)u(t)dt
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Controllability Gramian

The matrix function

Wito,ts) = | ®(to,t)BE) BT (to, ) dt

to

is called the controllability Gramian.

A main result is the following
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Th.1 Controllability Criterion (Rugh 9.2)

The state equation is controllable on (o, ) if and only if the
controllability Gramian W (o, t¢) is invertible.

Remark: We will see later (Lec.6) that the minimal (squared) control
energy, defined by ||ul|? := ﬁzf |u|?dt, needed to move from
z(ty) = mo to z(tf) = 0 equals zd W (to, t )~ ao.

5/43



Proof of Th.1

i) Suppose first W is invertible. Given x the control signal
u(t) e *BTq)T(to, t)W_l (to, tf)$0

will give z(t¢) = 0 (check!). Hence the system is controllable.

ii) Suppose instead the system is controllable. Want to show W
invertible, i.e. that Wzq = 0 implies 2y = 0.

Find u 0 0 = ®a + [ DBudt, i.e. zo = — [,/ ®(to, t) B(t)u(t)dt

tr
g = — / 2T (t0, £) B(t) u(t)dt
tg S———
=z(t)

But this shows z¢ = 0 since
ty
12(8)||2 = / 2T (to, ) B(t) BT ()87 (0, t)wodt — 2T Wag = 0
to

6/43



Th2. LTI Controllability Test - (Rugh 9.5)

The following four conditions are equivalent:

(i) The system &(t) = Az(t) + Bu(t) is controllable.
(i) rank[B AB A?B ... A" 'B] =n.

(i) xeC,pTA=XpT,p"B=0 = p=0.

(iv) rank[\l —A B]=n VAeC.

The conditions (i) and (iv) are called the PBH test
(Popov-Belevitch-Hautus), see p221.

Notation: C(A, B) := [B AB A?B ... A" 'B]

7/43



Th.3 LTI Uncontrollable System Decomposition

Suppose that 0 < ¢ < n and
rank [B AB A’B ... AHB] —g<n

Then there exists an invertible P € R™*" such that

Ay A B
=il _ |4 A2 ~1p _ | b1
PAP_[O A] Pip M

where ﬁll isq X q, Bll is ¢ x m, and

rank[éll A\HEH Ce A\?IlBll] =(q
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Range and Null Spaces

Range space (Image) of M : X — Y
R(M) = {Mz:zeX}CY
Null space (Kernal)of M : X — Y

NM) = {: Mz=0}C X

#(B ) = telol-en)
b 3f) = o2 een)

Example:
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Cayley-Hamilton Theorem

Let p(s) := det(sI — A) be the char. polynomial of the square matrix

A, then
p(A4)=0

This means that A™, where n is the size of A, can be written as a

inear combination o of lower order
| bination of A* of | d

A" = —an_lAn_l — .. — alA - aol
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Proof Th. 3

Use the n x n matrix P = [P; P»] where P; is an n X ¢ matrix with
lin. indep. columns taken from C(A, B) and P is any n x (n — q)
matrix making P invertible. Introduce the notation

P_1 — []\]\ﬂ,then []]\\{] [Pl PQ] = [% IO ] Note NP; = 0.
n—q

R(B)CR(P))= NB=0= B=P 'B= H\ﬂ B= lgll

R(AP)) C R(P)) = NAP,=0= A= P 'AP = Hﬂ AP = [ASI 412]

rank C(A1, By) = rank C(4, B) = ¢

11/43



Proof of Th. 2

(i) = (ii) [f (ii) fails, then after a coordinate change as in Theorem 3,
Z9 is unaffected by the input, so (i) fails.

(i) = (i) 1 p" W (to,ts)p = 0 for some p # 0, then

t
/ f pTeA(to—t) BBTeAT(to—t)pdt =0
to

pTeA(toft)B =0 Vte [to,tf]
Differentiation with respect to ¢ at t = ¢, gives

p'[B AB...A"!'B] =0,

so (i) fails.
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Proof Th2 continued

(ii) = (iii)  Ifiii fails, i.e. pT A = A\p” and p’ B = 0 for p # 0
thenp’ [B AB... A" 'B] = 0, so (ii) fails.

(iii) = (ii) Ifrank[B ... A" 1B] = q < nthen let P be defined as
in Theorem 3 and let po” Ao = ApoT and p? = [0 po”]P~L. Then

B

p'B = [0 p'] [ 011] =0
A, A _ N

pTA _ [0 pQT] 11 A12 P 1 — )\[0 pQT]P 1 — )\pT
0 A

so (i) fails.
(iv) = {pT[)\ —A B|=0=p= o} & (i)
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Tank example - controllable?

I
s

NI

=1 A

0 -2 1
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Tank example - controllable?

IcEN
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Example - Single Input Diagonal Systems

For which \;, b; is this system controllable?

)\1 0 bl
Ay by

9 = T+ u
0 . bn

Method 1: When is the controllability matrix invertible?

by DA AT b AT
C(A B) b.2 boda DA ... boADT!

b bpdn b2 b ARTE

After some work: When all \; are distinct and all b; nonzero.

Method 2: The PBH-test gives you this result immediately!
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LTV Reachability

The equation
#(t) = A(t)z(t) + B)u(t), x(to) =0
is called reachable on (to,ty), if for any x ¢, there exists u(t) such that

$(tf) =xy.

The matrix function
ty

Wi (to, ty) = Oty t)B)B(t)T®(ty,t) " dt

= O(ty, to)W(to,ts)®(ts, to)"

is called the reachability Gramian.

Continuous time controllability and reachability are equivalent
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LTV Observability

The equation

i(t) = A@a(t),  @(to) = o
y(t) = C(t)a(t)

is called observable on [ty, ts] if any initial state x¢ is uniquely
determined by the output y(t) for t € [to,ty].

Itis called reconstructable on [to, 1] if the state () is uniquely
determined by the output y(t) for ¢ € [to,tf].

In continuous time, observability and reconstrubality are equivalent
(why?)
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Observability Gramian

The matrix function

M(to, t7) = /t T ot 10)TC T2, to)dt

0

is called the observability Gramian of the system

Remark: Operator interpretation (see later)
M(t(), tf) =L*L
where L : R" — L5'(tg,t5) with
(Ll’o)(t) = C(t)q)(t,to)afo, 9 € R
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Theorem 4 (Rugh 9.8) - Observability Criterion

The following two conditions are equivalent

(i) The system {A(t),C(t)} is observable on [to,?f].
(i) M(to,t7) >0
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Th. 5 (Rugh 9.11) - LTI Observability

The following four conditions are equivalent:

(i) The system @:(t) = Ax(t), y(t) = Cx(t) is observable.

(i) rank

(i) A€ C:

(iv) rank

C
CA

CAn—l

(AT — A
C

= n.

Ap=Xp,Cp=0 =p=0

=n VYAeC.
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Theorem 6 - Unobservable State Equation

C

CA
Suppose that rank i =l<n

CA'n—l
Then there exists an invertible Q € R™*™ such that

A 0 R
-1 11
A — A A C —
Q AQ [Am A22‘| . Q [C'n 0}
Cn
. A CriAn
where Aq1isl x [, Cq1is p x [, and rank ) = [/,
O Al
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LTI Controller Canonical Form - Single Input

Suppose (A, b) is controllable. There is an invertible P such that a
state transformation will bring the system to the form

0 1 0 0
PAP =A=' ¢ - ' | PB=B,=
0 0 .. 1
—ag —Q1 ... —Qp_1 1

det(sl — A) =s" + 18"+ ... +a1s+ao

23/43



Introduce some notation for C~1(A, b):

My
M,A*b =0, k=0,...,n—2

= [b Ab ... A”—lb]_l = MoAn-1p— 1

M,
We can use the transformation z = Px where
M,
M, A
P = .
MnAn—l
That P is invertible follows from calculation of PC (the new

controllability matrix)
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PA =

PB =

0
b ab Ay = :
0
1
0 1 0
0 0 1
—ap —ap —Qp—1
0
= || =B,
0
1
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Controllability Index

To construct the corresponding controller form when we have multiple
inputs (m > 1) we need the following

Definition: Let B = [By ... By,|. Forj =1,...,m, the
controllability index p; is the smallest integer such that A”7 B; is
linearly dependent on the column vectors occuring to the left of it in the
controllability matrix

[B AB ... A?HB}
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Notation for Controller Form

Given a contr. system { A, B}, with controllability indices p1, . . . pm,

define
M
—1
M= = |:B1 ABl 500 Apl_lBl ce Bm .. Apm_le
M,
P My
p=| g | m=| T
P ' PR—
" My 4.t p, AP !

Notice that it is rather easy to write Matlab code for this.

See Rugh 13.9 for the proof of the following result
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Theorem 7, Controller Form - Multiple Inputs

The transformation z = Px gives (A, B.) with

1
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Theorem 7, Controller Form - Multiple Inputs

1 % *
B, = 0 1 * K
L0 ... 0 1|

The block sizes equal the controllability indices p;.

If B is not full rank, B, will have a stair-case form.
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LTI Feedback & Eigenvalue Assignment (Rugh 14.9)

Using the controller form it is now easy to prove

Suppose (A, B) is controllable. Given a monic polynomial p(s) there
is a feedback control u = —Kx so that

det(sI — A — BK) = p(s).

Proof We can get rid of the x elements in B, by writing B, = BCT
where T is an upper triangular matrix with right inverse. Introduce the
new control signal 4 = T'u. By state feedback we can now change
each line of stars in A.. We can for instance transform A, to a
controller form with one big block, with the last row containing the
coefficients of p(s).
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Definition - Observability Index

Let CT = [C4T ... C,7]T. Forj = 1,...,p, the observability index
7; is the smallest integer such that C'; A" is linearly dependent on the
row vectors occuring above it in the observability matrix

C
CA

CAn—l

31/43



Theorem 8 -Observer form

Suppose (C, A) is observable. Then there is a transformation
z = Px,tothe form 2 = A,z, y = C,z with

A, = transpose of the form for A. above

C, = transpose of the form for B, above

The size of the blocks equals the observability indices 7);.
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Theorem 9 - Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian
W, (—o0, 0) equals the unique solution P to the matrix equation

PAT + AP = -BB”
Similarly, the observability Gramian M (0, o) equals the solution () of

QA+ ATQ =-CcTC
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Proof of Theorem 9

Let P = W, (—00,0) = [ eA"BBTeA" 7 do. Then

PAT 4 AP = /O - 880 (A" BB do
= {eAUBBTeAT”}ZO

= -BBT

The linear operator (Lyapunov 1893)
L(P) = AP + PAT

has R(L) = R"*" so N (L) = {0} and the solution P is unique.

The equation for the observability Gramian is obtained by replacing
A, B with AT CT.
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Balanced Realization

For the stable system (A, B, C), with Gramians P and @, the variable
transformation & = T'z gives

A

P = TPT*
Q = T7QT™!
Choosing R, T, unitary U and diagonal X from
Q = R*R (Choleski Factorisation)
RPR* = UX*U*

(Singular Value Decomposition)

i »12y*R

gives (check)

P = Q=3
The corresponding realization (A, B, C) is called a balanced
realization of the system (A, B, C).
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Truncated Balanced Realization

Let the states be sorted such that 3. is decreasing. The diagonal
elements of 3 measure “how controllable and observable” the
corresponding states are. With

il (A A s Bl A_1A A
A = ~ ~ B = ~ =]
| Ao A22]’ [321 ¢ [Cl 02}
=0
= 0 22‘|

the system (/Tn, El, @1) is called a truncated balanced realization of
the system (4, B, C).

If 31 >> X5 the truncated system is probably a good approximation.
Choose either D = 0 or to get correct DC-gain.
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Example (done with balreal in MATLAB)

1-—s
64+ 355 4+ 554+ 783+ 552 +3s+1

¥ = diag{1.98,1.92,0.75,0.33,0.15,0.0045}

C(sI—A)™'B

N P 0.20s® — 0.44s + 0.23
C(sI — A" 'B =
(s ) 3 + 0.4452 1 0.665 + 0.17

" Bode Magnitude Diagram
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Bonus: Full Kalman Decomposition

Simultaneous controller and observer decomposition

Use P = [Pl P, P3 P4] where P; has n; columns with

Columns of {Pl Pg} basis for R(C')
Columns of P; basis for R(C) N N (O)
Columns of {Pg P4} basis for N'(O)
Columns of P53 chosen so P invertible.

Ay 0 A 0 By
i - A1 Az Agz Ay B= By
0 0 Ass 0 0
0 0 Ay Au 0

A

C:[Cloc},o
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Kalman’s Decomposition Theorem

The system (A1, By, C1) is both controllable and observable.

It is of minimal order, nq

The transfer function equals C (sI — A1) "' By.
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Bonus: More on Controllability

A, B is controllable if and only if

@ The only C for which C(sI — A)~'B = 0,Vsis C =0

A, C'is observable if and only if

@ The only B for which C(sI — A)™'B = 0,Vsis B =0

Proof: 0 =C(sI — A)"'B=>_ CAFB/s" « 0=CA"B, Vk «

o:c[B AB

k=0
C
CA
A”‘IB] e 0= “|B
CAn—l
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Bonus: Parallel Systems

Let Gl(s) = Cl(SI = A1>7lBl and GQ(S) = CQ(SI = A2)71B2

If A1 and As have no common eigenvalues then

G1(s) + Ga(s) =0 = G1(s) = Ga(s) =0

Proof: Can assume both systems are minimal. From

-1
G1(s) + Ga(s) = [Cl 02} [SI 0 " s —OAJ [gj -

A
and the fact that [01 CQ},[ 1 01 is observable (PBH-test), the

0 A

. By |0
previous frame shows that [BQ] = [0]
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Bonus: System Zeros (SISO)

Assume (A, b, ¢) minimal and that z is not an eigenvalue of A.

Then the following are equivalent

@ G(z)=c(zI —A)b+d=0
@ With ug arbitrary and zq := (21 — A)~'buy we have

[z[ —A —b] lxgl
=0
c d | |ug
@ The following matrix looses rank

zI—A —b
c d
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Bonus: Series Connection SISO

Given two minimal systems n;(s)/d;(s) = c;(sI — A;)71b;, i=1,2

. o na(s) ni(s)
Then the series connection dj(s) di(s) IS

@ uncontrollable <= there is z so n1(z) = da(2) =0
@ unobservable <= there is z so na(z) = di(z) =0

Proof:
zI — Ay 0 b1

k <
Controllable, check when ran Cbyey - Ay 0] S n
zI — Ay 0
Observable, check whenrank | —boc; 21 — As| <n
0 C2
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