Linear Systems, 2019 - Lecture 4

Realization from Weighting Pattern
Minimal Realizations
Realization from Transfer Function

Realization from Markov Parameters

® 6 6 o6 o

Discrete Time

Rugh Ch 10, 11 (only pp194-199, skip proof of 11.7), (26)
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Example: Shift Register Synthesis

T
r = [:Ul T2 I3 1‘4}
1 0 01 1
1 0 00 0
z(k+1) = 010 0 z(k) + 0 u(k)
0 010 0
y(k) = [0 0 0 1]a(k)

Given a sequence y(0),y(1),...,y(N), what is the shortest shift
register that can generate this output for the input v = 07?
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Definition: Realization

The state equation of dimension n
z(t) = A(t)z(t) + B(t)u(t), =(to) =0
y(t) = C(t)x(t)

is called a realization of the continuous weighting pattern G(t, o) if
G(t,o) =C(t)®(t,0)B(0) Vt, o

It is called minimal if no realization of smaller dimension exists.

Notice the distinction between the weighting pattern and the impulse
response. The latter is zero for t < o.
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Theorem 1: Realizability

The weighting pattern G(¢, o) has a realization of dimension n if and
only if there exist matrix functions H (t) € RP*™, F'(t) € R"*™ such
that

G(t,o) = H(t)F(o) Vt,o
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If G(t,0) = H(t)F(o), then

is a realization.

Conversely, if

H(t) = C(t)®(¢,0)
F(o) = ®(0,0)B(0)

This does not work in discrete time. Why?
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The realizations {0, F'(t), H(t)} are seldom "nice".
Consider G(t,0) = e~ (=) with

{x‘(t) = c'u(t) (unstable)

z(t) = —x(t) +u(t) (stable)
y(t) = =(t)
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Theorem 2: Minimality

A linear realization of G/(¢, o) is minimal if and only if for some to < ¢,
it is both controllable and observable on (tg, ).

Proof Omitted (see Rugh pp 162—164 if interested)

Remark
There may still exist realizations of the impulse-responses, i.e. for
t > o, of lower dimension. See Exercise 10.7.
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Theorem 3: Periodic Realization

A periodic linear realization of G(¢, o) exists if and only if it is
realizable and 37" > 0:

Gt+T,04+T)=G(t,o) Vt,o
If so, then there also exists a minimal realization that is periodic.

The proof is omitted.
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Theorem 4: LTI Realization

A linear time-invariant realization of G (¢, o) exists if and only if G is
realizable, continuously differentiable and

G(t,o0) = G(t — 0,0)
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Proof of Theorem 4

“Only if” is immediate. To prove “if” let {0, B(t), C(t)} be a minimal
realization. We want to find an LTI realisation. Introduce

t
A=— [ B (0)B0)doW (to, ;)"

With C(t)B(c) = G(t — 0,0) it follows that
o:{;aumm+éiaamoﬂBwﬁ
= C'(t)B(0)B(0)T + C(t)B'(0)B(0)T
o:lfﬁmwm@B@F+owaﬂm@ﬂda

0=C'(t)+Ct) [ B'(0)B0) doW to, ;)"

to

0=C'(t)—C(t)A, C(t) =C(0)et
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Proof of Theorem 4, cont’d

G(t,o) = C(t)B(c) = C(t — o) B(0)
= C(0)e**=9) B(0)

A time-invariant realization is therefore

t=Az+ B0)u, y=C0)z
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The weighting pattern
G(t,o) = e~ (t=0)’

satisfies G(t,0) = G(t — 0, 0), but one can prove it is not factorizable
as F'(t)H (o), so no realization exists. In fact we have:

Remark
The weighting pattern G(t, o) is realizable as a time-invariant
(finite-dimensional) system if and only if it can be written as

n dip—1

G(t,o) Z Z Gkj - t—O’)J Alt=0)

k=1 7=0
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Write the time invariant impulse response
G(t,0) = (t — o)e” (=9

as
G(t,o) = H(t)F(o)
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Th.5 Transfer Function Realizability

A transfer matrix G (s) admits a linear time-invariant realization
G(s)=C(sI-—A)™'B

if and only if each entry of G(s) is a strictly proper rational function.
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Proof of Theorem 5

“Only if” is immediate.

To prove “if”, choose d(s) = s" + d,_15" ! + - -- + dgy and write

d(8)G(s) = Ny_18" 1+ + Ny

Let
0
A = I,
*dOI - 1Im *drfllm
B = [0 00 I,
C = [NO N ... Nr_l}
Z(s) = (sI—A)™
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Proof of Theorem 5

It is then easy to verify that

I,
1 $Im,
el
Sr—lfm

The equality C'(sI — A)~!B = G(s) follows by left multiplication with
C'. Note: This realisation might not be minimal.

When G(s) has distinct poles there is a more natural realization on
diagonal form (which is minimal):
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Gilbert-Realization

Introduce the partial fraction expansion

4 1
G(s) = ; Gim
and the rank-factorizations
G; =C;B;, Ciispxp;, Bjisp;xm

where rank G; = p;. Now use

A =diag{\1l,,,..., \1p, }

B= Bl .. BTT}T

c=|c,...,C]

That the realisation is minimal follows from the PBH-test.
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1 2
1 1 2 1 0 0
Gs)=|_ S ' = e
) l@+4)é+2) 312] s+ 1 {_1 01 s+2 (1 1

with
(-1 0 o0
A=]0 -1 0
0 0 -2
1 2
B=|-1 0
11
1 0 0
C‘o 11
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{A, B, C} is a minimal realisation of G(s) if and only if it is
controllable and observable.
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Proof of Theorem 6

If {A, B, C'} is not a minimal realisation then there exists { F', G, H } of
dimension n, < n such that

g(t) = CeMB = HeM'G Wt

This gives CA*B = ¢¥)(0) = HF*G V&, i.e.

c H

. | [B 4B - aiB|=| : [|G - PG
cAn-1 = HFr! >
—_—— @ ——— !

Oa fof

But O and C'y have rank less than or equal to n, so that holds also
for either O, or C,,. Therefore { A, B, C'} cannot be both controllable
and observable.
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Proof of Theorem 6, cont’d

Conversely, if { A, B, C'} is not controllable (similar if not observable) it
can be transformed to

A Ap| |Br
e a0 e )
Ce'B = C1e'' B,

so {A11, By, C1 } is a realization of lower dimension.
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Two minimal time-invariant realizations of G/(s) are related by a
coordinate transformation z = Pz.

The transformation is unique.
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Proof of Theorem 7

Let the two minimal realizations be
g(t) = Ce'B = Hel'"G' Vit

With the notation from the proof of Theorem 6 let
P = CaCJT(CfCJT)*l.

First prove that P~ = (O7O;) 'O} O,. The existence of the
inverses are guaranteed by controllability and observability.

Then verify that P~"'B =G, CP = Hand P 'AP = F.

For any other such transformation P it follows from
O.P = Oy = O, P and observability that P = P.
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Definition: Markov Parameters

Given a time-invariant impulse response ¢(t), the corresponding
Markov parameters are defined as

9(0),4'(0),92(0), ¢®(0), . ..

Define also the block Hankel matrices (for ¢, 7 > 0)

9(0) g(0) ... gU=b(0)
!
0
i = g()
46D 4(+5-2)(0)

We have g*(0) = C A*B and
G(s) = g(0)s™ + g'(0)s72 + g@(0)s™3 + . ..
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Th. 8 Realization from Markov Parameters

An analytic impulse response ¢(t) admits an n-th order time-invariant
realization & = Ax + Bu,y = Cz if and only if there exist positive
integers [, k < n such that

rank 'y =rank 'y q g5 =mn, 7=1,2,...

Proof Utilize
Iy; = M;W;
C
M; = :
CAi—l
Wj=|B AB .. A7!B

like in the proof of Theorem 6. See Rugh 11.7 for details.
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What is the dimension of a minimial realisation of g(t) = te'?

Since g¥)(0) = k we get
rank I';; = rank {0} =0

rank I'pg = rank [O ﬂ

rank I' ;, = rank

N = O
= W N
Il
—
Q0
=
=~
N = O
— = =
Il
\.l\D
™
V
w

1
2
3
so the minimial dimension is 2. In fact, one can take

a=lo i m=ft) =D d
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Theorem 9 - Discrete Time

k

y(k) = > Gk, j)u(j)

Jj=ko
G(k,j) = C(k)®(k,j +1)B(j), k > j +1

Cannot define weighting pattern, that is G(k, j) also for k < 7, since
® need not be invertible.

JH(k),F(k): G(k,5)=HK)F(j), k>j+1
= Jrealization {A(k), B(k),C(k)}
Proof
Ak)=1= ®(k,j+1)=1
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z(k+ 1) = u(k), y(k) = z(k)

is a realisation of

but you can not find a factorisation of the form

G(k,j) = HR)F(j), k=j+1
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z(k+1)=xz(k) +

y(k) = [1 6(k)| (k)

is reachable and observable on any interval containing £ = 0, 1, 2, but
it is not a minimal realisation of the pulse response

Gk,j)=146k)s(j—-1)=1, k>j+1

since
z(k+1) = z(k) + u(k), y(k) = z(k)

is of lower dimension.
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Some things we (and Rugh) left out

We did not obtain a method to find a minimal (A, B, C, D) from a
given G(s) in the case of non-distinct poles. One solution is to use the
non-minimal realisation in Theorem 5 and then apply Kalman
decomposition (or balanced realisation). But there if of course a more
direct approach see [Kailath, Linear Systems].

We could have talked about identification by state-space methods.
See the course in Identification if interested.
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