@ Least squares problems
@ Adjoint operators
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Review: Least Squares Solution to Linear Equations (l)

Consider a system of linear equations
Az =b,Ac R™" hec R™

with m > n and rank(A) = n (Tall A—more rows than columns, or
more equations than unknowns).

If b ¢ range(A) then the linear system is inconsistent, i.e., no solution
exists.

Find z that minimizes || Az — b||>—least squares solution
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Review: Least Squares Solution to Linear Equations (l)

Least squares solution to the inconsistent linear equation Az = b is
given by the solutionto AT Az = ATb;ie., x5 = (AT A)"1ATD.

Geometric interpretation:

Range of A

Orthogonal projection of b on the subspace range(A).
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Review: Least Norm Solution (ll)

Consider a system of linear equations
Az =0, AeR™" beR™

with m < n and rank(A) = m (Fat A—more columns than rows, or
more variables than equations).

@ There exist an infinite number of solutions to this linear
equation—(Underdetermined)

@ There is only one solution that is closest to the origin; i.e., a
solution to Az = b with least norm |||
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Review: Least Norm Solution (ll)

Least norm solution to the underdetermined linear equation Az = bis
given zj, = AT(AAT)"1p,

Geometric interpretation:

{z| Az =p}

NA) ={z|Az=0}

@ orthogonality condition: xj, L Null(A)

@ projection interpretation: x, is projection of 0 on solution set
{z|Az = b}.
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Least Squares Problems |

Given L and v, minimize | Lu — v| with respect to .

“Tall L, more equations than variables”

Note the orthogonality in the picture!
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Least Squares Problems Il

Given L and v, minimize |u| under the constraint Lu = v.

“Fat L, more variables than equations”

Note the orthogonality in the picture!
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Vector Space and Inner Products

A vector space V is a generalisation of R™ and is defined by 'vectors’
and ’scalars’ satisfying some standard rules, e.g

@ addition of vectors, v1 4 v9 = v2 + v1,
V1 + (Uz + U3) = (’U1 4P U2) + v3
@ multiplication with scalars (A A2)v = A1 (A2v)
(there are more rules). Scalar field could be e.g. R och C'

A scalar product < V, V >— R is a generalisation of y*x satisfying
natural linearity rules and < v,v > € (0, co) forall nonzero v.

Note that for complex scalars

< )\1111,)\2112 >= ;\1)\2 < v1,V2 >
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Examples and Orthogonality

Finite-dimensional vector space:
R", <y,z>=y'z or <y,z>=y"Qzr, Q>0

R™™ <V, X > =tr(Y*X)
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Examples and Orthogonality

Finite-dimensional vector space:
R", <y,z>=y'z or <y,z>=y"Qzr, Q>0

R™™ <V, X > =tr(Y*X)

Infinite-dimensional vector space:
l27 <Y,z >= Zzo—l y/j:xk

Lofa,b], < y(t),z(t) >= [ dt
Lawla,b], <y() z(t) > = [y y ()x(t)w(t)dt, w >0
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Examples and Orthogonality

Finite-dimensional vector space:
R", <y,z>=y'z or <y,z>=y"Qzr, Q>0

R™™ <V, X > =tr(Y*X)

Infinite-dimensional vector space:
la, <y, >= 3321 yivk

Lola,b], <y(t),z(t) > = [Py (t)z(t)dt
Lowlab], <y(t),2(t) > = [} y* @)a(t)w(t)dt, w>0
We will say that z and y are orthogonal if

<z,y>=0

Vectors orthogonal to a subspace S will be denoted by S+

(Orthogonal complement)
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Example: Matrix Adjoint

Let L : X — Y be a bounded linear operator. The adjoint operator
L* 'Y — X is defined by the identity

<y,Lx> = < L'y,x>

forre X,yeY.

From the equalities
<y,Lr>=y"Lr=(L"y)'z=< L'y, z >

we see that the adjoint of a matrix is given by its conjugate transpose.
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Example: Adjoint Transition Matrix

If L : R" — L5'[0, c0) is defined by
(Lxo)(t) = C()®(t,0)z0, x0 € R"
then the adjoint L* : L5'[0, 00) — R™ is given by

By = Am¢(t,0)TC(t)Ty(t)dt

Proof:

<y Lzg> = / ()T C(1)®(t, 0)zodt
0

- ( /0 - d(t, O)TC(t)Ty(t)dt>T )

= < L*y,z9 >
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Define instead L : L3'[0, c0) — L5'[0, 00) by
t
(Lu)(t) = / O(t, s)u(s)ds
0
What is the adjoint L*?

Hint: < y, Lu > =< L*y,u >

The audience is thinking
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Adjoint Equation

If ®(¢,t0) is the transition matrix for

The relation can be written

Da(s,t =@ _,r t,s)
A
Proof: Exercise
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Least Squares Problem |

Minimize | Lu — v| with respect to .

Solution: Any @ satisfying the Orthogonality Property
0 =< Lz, Lt —v > forall x (OP1)
Or equivalently
L*La = L*v

Application: Fewer control signals than objectives
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Proof - Completion of Squares

Assume first o satisfies OP1. Then with x = u — @ we get

|Lu —v|®* = < L — v+ Lz, L — v+ Lz >
=< Lu—v,Lt—v>+ < Lx,Lx >
= |L& —v|? + |Lz|?
> |La — v|?

Therefore 4 is optimal (might be non-unique).

Assume instead that @ is optimal. Since for any x

|L(G + ex) —v]? =
<Li—v,La—v> 42 < Lz, Ld—v> +€> < Lz, Lz >

should be min fore = 0we see < Lx, Lt — v > = 0, i.e OP1.
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Example: Estimating Initial State

Define L : R™ — L5"[to, t1] by
(Lzo)(t) = C(H)®(t1,t0)zo, z0 €R"
Problem:

Given an output measurement y(t) for t € [to, t1], find the value of x¢
that minimizes |Lxo — y|.

Solution:
We calculated L*y = [* ®(t, t0)TC(¢)"y(t)dt above.
Use of OP1 formula gives

xo = (L*L)"'L*y

t =1
= ( 1 ®(t, to) T CTOD(t, to)dt> 1 ®(t, to) T CTy(t)dt

to to
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Least Squares Problem Il

Minimize |u| under the constraint Lu = v.

Solution: Any @ satisfying L4 = v and the Orthogonality Property

0=<d,u—u > forall uwith Lu =v (OP2)

Or, if LL* invertible, equivalently

@ = L*(LL*) 'w (if LL* invertible)

Application: Reach certain state with minimal cost
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Proof - Completion of Squares

Assume a candidate 4 satisfies OP2. Then
<u,u> =< u,u>+<u—wu—u> > <u,0>
for all u satisfying Lu = v. Hence 4 is optimal (and unique).

Necessity of OP2: As above, study ||@ + e(u — @)||? near e = 0

If LL* invertible then & = L*(LL*)~ ' satisifies both L&t = v
(obvious) and OP2:

<t,0—u>= < L*(LL*) Yo, L*(LL*) v —u >
= < (LL") v, —Lu> =0
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Remarks - Technical Details

In the first problem, the solution & might be nonunique if L* L is not
invertible. For example when L = 0
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Remarks - Technical Details

In the first problem, the solution & might be nonunique if L* L is not
invertible. For example when L = 0

In the second problem, if L L* is not invertible, the equation Lu = v
might be unsolvable, the solution can also be non-unique. But if
LL*x = vis solvable, then & = L*z is optimal

P Y
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Find u(t) = [Z;Eg] with min 2-norm so fol up(t) + tug(t)dt =4

’ The audience is thinking ‘

Hints:

What is a suitable L?
What is L*?

@ = L*(LL*)"14 =7
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Properties of the Adjoint

Let L be a bounded linear operator between two real Hilbert spaces.
Then (where the bar denotes ‘closure’)

L* = L (1)
RS = N(L*) 2)
[RILH: = N(I) (3)

R(L) = WE* (4)
R(L¥) = N@D)* (5)
N(L*) = N(LL) (6)
N(L) = N(L*L) (7)



Properties of the Adjoint

Proof of (2):

yeR(L)r & <y, Le>=0, Vz e <Ly z>=0, Vo ye N(LY)

Proof of (7):

Lr=0 = L*Lr=0 = 0=<uz,L*Lr >=< Lz, Lv >= Lz =0

22/32



Example: Shift Operator on [,

la = {z=(21,72,%3,...): Y2, %2 < 00}
x = (x1,m2,23,...)
y = (Y1,92,93--.)
Sz = (0,21,x2,...)
Sy = (y2,43:--.)
<y,Sz> = Y Xiyin1z =< Sy, x>

R(S) = {(0,%,%,%,...)}
N(S*) = {(+,0,0,0,...)}
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Operator Interpretation of Gramian

Recall that the matrix function
ts T T
Witosty) = [ ®lto, ) BOB() ko, 1)
to
is called controllability Gramian.

Define L : Ly [to, tf] — R™ by Lu = [, ®(to, 7)B(r)u(r)dr. Then

z(ty) = @(tg.to)z(to) + Lu
(L*z)(t) = B@t)T®(tg,t)

1t = [ b, BB Blt0,7) dr = Wt ty)

to
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Th. Rugh 9.2 - Controllability Revisited

The system @(t) = A(t)z(t) + B(t)u(t) is controllable on (to,t¢) if
and only if W(to,tf) > 0 The minimal cost jttof |u|dt to reach 0 from

xg is then W(to, tf) xQ.

Proof.

Reachability on (to,t5)

tr ¢ ¢ ¢ ¢ T O

Vzo : Ju: x(ty) =0
Voo :3Ju:xg+ Lu=0
(L) =

N(L*) = {0}
N(LL*) = {0}
NW (to, t5)] = {0}
W(to,t5) >0

b,
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Controllability Cont'd

Minimize || under the constraint 2o + Lu = 0.

—L*(LL*) 'z (if LL* invertible)

(3%
Il

= 2f (LL*)Yag = 2l W (to, t5) o
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Observability Gramian

For o € R™, y € LY[to, t1], introduce
(Mxo)(t) = C()®(t to)zo, 1 € [to, 1]

t
My = [ ot t)TO®)Ty(t)dt
to

Then the unobservable initial states can be computed as

N(M) = /\/(M*M):/\/'( tl(I)(t,tO)TC(t)TC(t)(P(t,tO)dt)

to
Note that the matrix

Bt o) TOW) TR, to)dt

is the observability Gramian of the system.

27/32



Example - Polynomial Interpolation

Given m points (z;, y;) find a degree n polynomial
p(z) =po+pz+...ppa"

minimizing the interpolation error

J = |y — plxi)]?
=il

Note that
p(z1) 1 = 2 z1 | (po
p(x2) 1z a3 3 | | p1
p($m) I zm x?n T Dn
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Example - Polynomial Interpolation

The problem is hence of the form: Find p that minimizes

ly — Lp|?
The solution is given by (OP1)
p=(LL) Ly
p(t) = [1 to t“) P
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Example - Function Approximation

Given a set of basis functions ¥;(z) and a function v(x) solve the
approximation problem

b
min/ lv(x Zuz i |dx
a

Solution (L*L)u = L*v gives (check)

<\I/1,\I/1> <\If1,\1’n> <\I/1,U>

<U,, ¥ > ... <9, ¥, > <V, v>
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Example - Function Approximation

Find a 2nd order polynomial approximating e’ for 0 < ¢ < 1

1
min/ et — ug — ugt — ugt?|?dt
0

Calculation of < t*,#™ > = 1/(k +m + 1) and < t¥, e! > gives
uo 1 1/2 1/3] ' [e-1
w| =|1/2 1/3 1/4 1
ws| |1/3 1/4 1/5] |e—2

Giving the approximation

u(t) ~ 1.013 + 0.851t + 0.839¢2
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Example - Function Approximation

xp(t) (blue), L2-approx (red), Taylor-approx (black)

Note that the Lo approximation (red)
e' 2 1.013 + 0.851¢ + 0.839¢*
is significantly better than the Taylor approximation (black)
et~ 1+t +0.5¢
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