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Lecture 6

Least squares problems

Adjoint operators

1 / 32



LionSealWhite

Review: Least Squares Solution to Linear Equations (I)

Consider a system of linear equations

Ax = b, A ∈ Rm×n, b ∈ Rm

with m ≥ n and rank(A) = n (Tall A—more rows than columns, or
more equations than unknowns).

If b /∈ range(A) then the linear system is inconsistent, i.e., no solution
exists.

Find x that minimizes ‖Ax− b‖2—least squares solution
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Review: Least Squares Solution to Linear Equations (I)

Least squares solution to the inconsistent linear equation Ax = b is
given by the solution to A>Ax = A>b; i.e., xls = (A>A)−1A>b.

Geometric interpretation:

Orthogonal projection of b on the subspace range(A).
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Review: Least Norm Solution (II)

Consider a system of linear equations

Ax = b, A ∈ Rm×n, b ∈ Rm

with m ≤ n and rank(A) = m (Fat A—more columns than rows, or
more variables than equations).

There exist an infinite number of solutions to this linear
equation—(Underdetermined)

There is only one solution that is closest to the origin; i.e., a
solution to Ax = b with least norm ‖x‖.
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Review: Least Norm Solution (II)

Least norm solution to the underdetermined linear equation Ax = b is
given xln = A>(AA>)−1b.

Geometric interpretation:

orthogonality condition: xln ⊥ Null(A)
projection interpretation: xln is projection of 0 on solution set
{x|Ax = b}.
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Least Squares Problems I

Given L and v, minimize |Lu− v| with respect to u.

“Tall L, more equations than variables”

Note the orthogonality in the picture!
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Least Squares Problems II

Given L and v, minimize |u| under the constraint Lu = v.

“Fat L, more variables than equations”

Note the orthogonality in the picture!
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Vector Space and Inner Products

A vector space V is a generalisation of Rn and is defined by ’vectors’
and ’scalars’ satisfying some standard rules, e.g

addition of vectors, v1 + v2 = v2 + v1,
v1 + (v2 + v3) = (v1 + v2) + v3

multiplication with scalars (λ1λ2)v = λ1(λ2v)

(there are more rules). Scalar field could be e.g. R och C

A scalar product < V, V >→ R is a generalisation of y∗x satisfying
natural linearity rules and < v, v > ∈ (0,∞) forall nonzero v.

Note that for complex scalars

< λ1v1, λ2v2 >= λ̄1λ2 < v1, v2 >
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Examples and Orthogonality

Finite-dimensional vector space:
Rn, < y, x > = y∗x or < y, x > = y∗Qx, Q > 0

Rn×m, < Y,X > = tr(Y ∗X)

Infinite-dimensional vector space:
l2, < y, x > =

∑∞
k=1 y

∗
kxk

L2[a, b], < y(t), x(t) > =
∫ b

a y
∗(t)x(t)dt

L2,w[a, b], < y(t), x(t) > =
∫ b

a y
∗(t)x(t)w(t)dt, w > 0

We will say that x and y are orthogonal if

< x, y > = 0

Vectors orthogonal to a subspace S will be denoted by S⊥

(Orthogonal complement)
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Example: Matrix Adjoint

Let L : X → Y be a bounded linear operator. The adjoint operator
L∗ : Y → X is defined by the identity

< y,Lx > = < L∗y, x >

for x ∈ X , y ∈ Y .

From the equalities

< y,Lx > = y∗Lx = (L∗y)∗x = < L∗y, x >

we see that the adjoint of a matrix is given by its conjugate transpose.
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Example: Adjoint Transition Matrix

If L : Rn → Lm
2 [0,∞) is defined by

(Lx0)(t) = C(t)Φ(t, 0)x0, x0 ∈ Rn

then the adjoint L∗ : Lm
2 [0,∞)→ Rn is given by

L∗y =
∫ ∞

0
Φ(t, 0)TC(t)T y(t)dt

Proof:

< y,Lx0 > =
∫ ∞

0
y(t)TC(t)Φ(t, 0)x0dt

=
(∫ ∞

0
Φ(t, 0)TC(t)T y(t)dt

)T

x0

= < L∗y, x0 >
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Exercise

Define instead L : Lm
2 [0,∞)→ Lm

2 [0,∞) by

(Lu)(t) =
∫ t

0
Φ(t, s)u(s)ds

What is the adjoint L∗?

Hint: < y,Lu > =< L∗y, u >

The audience is thinking
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Adjoint Equation

If Φ(t, t0) is the transition matrix for

ẋ(t) = A(t)x(t)

then Φ(t0, t)T is the transition matrix for

ż(t) = −A(t)T z(t)

The relation can be written

[ΦA(s, t)]∗ = Φ−AT (t, s)

Proof: Exercise
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Least Squares Problem I

Minimize |Lu− v| with respect to u.

Solution: Any û satisfying the Orthogonality Property

0 =< Lx,Lû− v > for all x (OP1)

Or equivalently

L∗Lû = L∗v

Application: Fewer control signals than objectives
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Proof - Completion of Squares

Assume first û satisfies OP1. Then with x = u− û we get

|Lu− v|2 = < Lû− v + Lx,Lû− v + Lx >

= < Lû− v, Lû− v > + < Lx,Lx >

= |Lû− v|2 + |Lx|2

≥ |Lû− v|2

Therefore û is optimal (might be non-unique).

Assume instead that û is optimal. Since for any x

|L(û+ εx)− v|2 =
< Lû− v, Lû− v > +2ε < Lx,Lû− v > +ε2 < Lx,Lx >

should be min for ε = 0 we see < Lx,Lû− v > = 0, i.e OP1.
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Example: Estimating Initial State

Define L : Rn → Lm
2 [t0, t1] by

(Lx0)(t) = C(t)Φ(t1, t0)x0, x0 ∈ Rn

Problem:
Given an output measurement y(t) for t ∈ [t0, t1], find the value of x0
that minimizes |Lx0 − y|.

Solution:
We calculated L∗y =

∫ t1
t0

Φ(t, t0)TC(t)T y(t)dt above.
Use of OP1 formula gives

x0 = (L∗L)−1L∗y

=
(∫ t1

t0
Φ(t, t0)TCTCΦ(t, t0)dt

)−1 ∫ t1

t0
Φ(t, t0)TCT y(t)dt
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Least Squares Problem II

Minimize |u| under the constraint Lu = v.

Solution: Any û satisfying Lû = v and the Orthogonality Property

0 =< û, û− u > for all u with Lu = v (OP2)

Or, if LL∗ invertible, equivalently

û = L∗(LL∗)−1v (if LL∗ invertible)

Application: Reach certain state with minimal cost
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Proof - Completion of Squares

Assume a candidate û satisfies OP2. Then

< u, u > = < û, û > + < u− û, u− û > ≥ < û, û >

for all u satisfying Lu = v. Hence û is optimal (and unique).

Necessity of OP2: As above, study ‖û+ ε(u− û)‖2 near ε = 0

If LL∗ invertible then û = L∗(LL∗)−1v satisifies both Lû = v
(obvious) and OP2:

< û, û− u > = < L∗(LL∗)−1v, L∗(LL∗)−1v − u >
= < (LL∗)−1v, v − Lu > = 0
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Remarks - Technical Details

In the first problem, the solution û might be nonunique if L∗L is not
invertible. For example when L = 0

In the second problem, if LL∗ is not invertible, the equation Lu = v
might be unsolvable, the solution can also be non-unique. But if
LL∗x = v is solvable, then û = L∗x is optimal
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Example

Find u(t) =
u1(t)
u2(t)

 with min 2-norm so
∫ 1

0 u1(t) + tu2(t)dt = 4

The audience is thinking

Hints:

What is a suitable L?

What is L∗?

û = L∗(LL∗)−14 =?
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Properties of the Adjoint

Let L be a bounded linear operator between two real Hilbert spaces.
Then (where the bar denotes ‘closure’)

L∗∗ = L (1)

[R(L)]⊥ = N (L∗) (2)

[R(L∗)]⊥ = N (L) (3)

R(L) = [N (L∗)]⊥ (4)

R(L∗) = [N (L)]⊥ (5)

N (L∗) = N (LL∗) (6)

N (L) = N (L∗L) (7)
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Properties of the Adjoint

Proof of (2):

y ∈ R(L)⊥ ⇔ < y,Lx > = 0, ∀x⇔ < L∗y, x > = 0, ∀x⇔ y ∈ N(L∗)

Proof of (7):

Lx = 0 ⇒ L∗Lx = 0 ⇒ 0 = < x,L∗Lx > = < Lx,Lx >⇒ Lx = 0
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Example: Shift Operator on l2

l2 =
{
x = (x1, x2, x3, . . .) :

∑∞
i=1 xi

2 <∞
}

x = (x1, x2, x3, . . .)

y = (y1, y2, y3, . . .)

Sx = (0, x1, x2, . . .)

S∗y = (y2, y3, . . .)

< y, Sx > =
∑∞

i=1 yi+1xi =< S∗y, x >

R(S) = {(0, ∗, ∗, ∗, . . .)}

N (S∗) = {(∗, 0, 0, 0, . . .)}

23 / 32



LionSealWhite

Operator Interpretation of Gramian

Recall that the matrix function

W (t0, tf ) =
∫ tf

t0
Φ(t0, t)B(t)B(t)T Φ(t0, t)Tdt

is called controllability Gramian.

Define L : Lm
2 [t0, tf ]→ Rn by Lu =

∫ tf

t0 Φ(t0, τ)B(τ)u(τ)dτ. Then

x(tf ) = Φ(tf , t0)[x(t0) + Lu]
(L∗x)(t) = B(t)T Φ(t0, t)Tx

LL∗ =
∫ tf

t0
Φ(t0, τ)B(τ)B(τ)T Φ(t0, τ)Tdτ = W (t0, tf )
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Th. Rugh 9.2 - Controllability Revisited

The system ẋ(t) = A(t)x(t) +B(t)u(t) is controllable on (t0, tf ) if

and only if W (t0, tf ) > 0. The minimal cost
∫ tf

t0 |u|
2dt to reach 0 from

x0 is then xT
0 W (t0, tf )−1x0.

Proof.

Reachability on (t0, tf )⇔ ∀x0 : ∃u : x(tf ) = 0

⇔ ∀x0 : ∃u : x0 + Lu = 0

⇔ R(L) = Rn

⇔ N (L∗) = {0}

⇔ N (LL∗) = {0}

⇔ N [W (t0, tf )] = {0}

⇔ W (t0, tf ) > 0
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Controllability Cont’d

Minimize |u| under the constraint x0 + Lu = 0.

û = −L∗(LL∗)−1x0 (if LL∗ invertible)

|û|2 = xT
0 (LL∗)−1x0 = xT

0 W (t0, tf )−1x0
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Observability Gramian

For x0 ∈ Rn, y ∈ Lm
2 [t0, t1], introduce

(Mx0)(t) = C(t)Φ(t, t0)x0, t ∈ [t0, t1]

M∗y =
∫ t1

t0
Φ(t, t0)TC(t)T y(t)dt

Then the unobservable initial states can be computed as

N (M) = N (M∗M) = N
(∫ t1

t0
Φ(t, t0)TC(t)TC(t)Φ(t, t0)dt

)

Note that the matrix∫ t1

t0
Φ(t, t0)TC(t)TC(t)Φ(t, t0)dt

is the observability Gramian of the system.
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Example - Polynomial Interpolation

Given m points (xi, yi) find a degree n polynomial

p(x) = p0 + p1x+ . . . pnx
n

minimizing the interpolation error

J =
m∑

i=1
|yi − p(xi)|2

Note that
p(x1)
p(x2)

...
p(xm)

 =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...
1 xm x2

m . . . xn
m



p0
p1
...
pn

 := Lp
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Example - Polynomial Interpolation

The problem is hence of the form: Find p that minimizes

|y − Lp|2

The solution is given by (OP1)

p̂ = (L∗L)−1L∗y

p(t) =
1 t . . . tn

 p̂
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Example - Function Approximation

Given a set of basis functions Ψi(x) and a function v(x) solve the
approximation problem

min
∫ b

a
|v(x)−

n∑
i=1

uiΨi(x)|2dx

Solution (L∗L)u = L∗v gives (check)
< Ψ1,Ψ1 > . . . < Ψ1,Ψn >

...
< Ψn,Ψ1 > . . . < Ψn,Ψn >

u =


< Ψ1, v >

...
< Ψn, v >


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Example - Function Approximation

Find a 2nd order polynomial approximating et for 0 ≤ t ≤ 1

min
∫ 1

0
|et − u0 − u1t− u2t

2|2dt

Calculation of < tk, tm > = 1/(k +m+ 1) and < tk, et > givesu0
u1
u2

 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5


−1 e− 1

1
e− 2


Giving the approximation

u(t) ≈ 1.013 + 0.851t+ 0.839t2
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Example - Function Approximation

Note that the L2 approximation (red)

et ≈ 1.013 + 0.851t+ 0.839t2

is significantly better than the Taylor approximation (black)

et ≈ 1 + t+ 0.5t2
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