o Differential Algebraic Equations
@ Rosenbrock System Matrix
@ Course Review

Suggested reading: T. Kailath Linear Systems, Chapter 8 (link
available in the email).
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Differential Algebraic Equation

Models of physical systems are often on the form
0= F(z,z,t)
If z and & enter linearly we get
Ei = Az + f(?)

Linear Differential Algebraic Equation (DAE)

Any linear differential equation with higher order derivatives can be
brought into this form by augmenting the state vector.

FE might not be invertible
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Example: Two Tank System

Flow: ¢, Volumes: V1, V5, Concentrations: u(t), z1(t), z2(t)

Dynamics:
ViZi +qx1 = qu
Voo —qr1 +qra = 0
-1 90 1
i’:[lvl C1|er+ ‘61 qu
1% Va

If Vi =0 or V5 = 0, the system becomes first order

Often simulation code, controller design methods etc have problems to
treat such special cases easily
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Example: Rotating Masses

Qn (?rl Q2 Qro
i d_ i
61 J1 i JQ 05
Jiwr = Qn + Qr1 01 = w1
Jows = Q2 + Qr2 0y = wo

Qr1 = d(w2 — wr) Gn = Qi

where ;1 and @, are known time functions and .J;, J> and d are
parameters. How is e.g. the case J = 0 treated?
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General Robot Model

Ji(t) + Di(t) + Kx(t) = f(t)

where J, D and K are matrices
Often good to use physical variables and "natural”" equations
Interconnection of subsystems

How can a general system of linear differential equations be
transformed, and what is the most simple form?
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Example: A Differentiator

Co. =1

1
Evout - _(Uin - Uc)

Vout = Vin — Ve — Ri

If 1/K =0, then voys = —RC0y,.
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Example continued

With .
T = {vc Vout z}
we have
sC 0 —1 0
sE—A=|1 -1k 0|, B=|1
1 1 R 1
H=1[0 1 0]
_ —RC's
Vout (s) = H(sE — A) 1B, (s) = va(s)
KST K

With E singular, we can describe nonproper transfer functions
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General description of linear systems

Physical system described by linear differential equations, input u,
output y and internal physical variables ¢

P(s)C = Q(s)u
y = R(s)C+W(shu

Matrix notation with Rosenbrock system matrix

[—Pf% ﬁ%(é))] [_uC] B [2]

The transfer function is
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Special cases

- : = Dpr(s) I
Right Fract — NgDzplu: P=
ight Fraction y rDp u [—NR(s) 0]

Left Fraction y = D;'Nyu: P = [DLI(S) NLO<S)]
sI-A B
State Space: P = [ _C D]
. i _[sE-A B
Descriptor : P = [ _C D]
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Definition: Equivalence Transformations

Two systems are “equivalent” if there are unimodular matrices M (s),
M>(s) and polynomial matrices X (s) and Y () such that

<M1<s> o><P1<s> Q1<s>) <M2<s> Y<s>>_<P2<s> Qz(5)>
X(s) I)\—=Ri(s) Wi(s) 0 I —Ra(s) Wa(s)

Py P

It can be seen that this corresponds to natural transformations of
variables and equations.

Fact: Any Rosenbrock system matrix is equivalent to one in state

space form
( P(s) (s)) N <31_A B )
—R(s) W(s) —-C  J(s)
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Controllability and Observability

From the transformation to state space form

(Ml(s) o) <P(s) Q@)) (Mg(s) Y(s)> B <51—A B )
X(s) I)\—R(s) W(s) 0 I/ \ —-C Js)

we see that Smith forms are related as
P(s) ~ sI—-A
[P(s) Q(s)) ~ [sI— A B)

() ~ (12!

Controllability < P, @ left coprime
Observability < P, R right coprime
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Irreducibility

A system

_ [ PG
o (7

~—
O
—~
»
~—
N——

is called irreducible if P, () are left coprime and P, R are right
coprime

All state space descriptions equivalent to P are then controllable and
observable, and hence minimal.

Consequence: All irreducible systems having the same transfer
function are equivalent.
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Poles and zeros

Transfer function on Smith-McMillan form

6(s) =) EGED 1) sl I:_T]_lV(s)

£(s) Vr(s)

System Matrix: P = [ ) Y S)] ~ [é S?S)]

P(s)  Q(s)
—R(s) Wi(s)
transfer function G(s) must be equivalent, therefore

Any other irreducible system P = ) having the same

The poles of G are given by det P(s) =0
The zeros of GG are given by the invariant polynomials of P
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Course review

Continuous time-varying linear (CT-LTV) system

z(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)z(t) + D(t)u(t) (1)
Discrete time-varying linear (DT-LTV) system

z(k+1) = A(k)z(k) + B(k)u(k)
y(k) = C(k)x(k) + D(k)u(k) (2

14/26



Time-domain analysis: solutions and transition matrix

Solution to CT-LTV system: with transition matrix ®(¢, to)
t
z(t) = ®(tto)ro+ [ P(¢ 0)B(o)u(o)do
to

W) = COBHt)z0+ | COBE o) Blo)u(o)do + D(E)ult)

to
Special cases for the transition matrix ®(t, to):

o CT-LTI system: ®(t,tg) = eAt—t0);

@ CT-LTV system with commutative A(t): If
A(t) /tto A(o)do = ftto A(o)do A(t) then

D(t, tg) = exp { I A(a)da}

The AJL formula: det B(t, to) = exp (f}, tr[A(o)]do )
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Time-domain analysis: stability

@ For CT-LTI system: stability determined by the eigenvalues of A:
A Hurwitz matrix (eigenvalues with negative real part) implies
asymptotic stability;
@ For CT-LTV system: stability is NOT determined by eigenvalues of
A(t).
Transition matrix conditions for stability z(t) of #(t) = A(t)z(t):
uniformly stable if 3y > 0
@t to)| < v, Vt>t>0

uniformly asymptotically stable if it is uniformly stable and
Vé>0: 3T >0:

|®(t, to)|| < 0, VE>to+T, to >0
uniformly exponentially stable if 3y, A > 0 such that

1B, 80)]| < e ) v >¢>0
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Time-domain analysis: stability by Lyapunov function

1. There exists n > 0, p > 0, Q(t):

nl <Q(t) <pl, AT(H)Q()+QA() +Q() <0
= |z|2 < p/n|x(to)|? = uniform stability
2. There exists n > 0,p > 0,v > 0, Q(t):

nl < Q(t) < pl, AT)Q() + QA + Q1) < —vI

= |z2 < %e_%(t_to)\:c(to)\Q = uniform exponential stability
(equivalent to uniform asymptotic stability).
3. There exists p > 0,v > 0, Q(t), to:

IR < p, AT®Q) + QA(H) +Q(t) < —vI
Q(to) not pos. semidef. = not uniform stable

Under controllability and observability conditions: Uniform BIBO
stability (external stability) < uniform exponential stability (internal
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Controllability and observability

Controllability Gramian
b T T
Wito,ty) = | ®(to,t)B()B(t)" ®(to,t)" dt

to

The state equation is controllable on (o, tf) if and only if the
controllability Gramian W (to, t¢) is invertible (W (to,ts) > 0).
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Controllability and observability

Controllability Gramian
b T T
Wito,ty) = | ®(to,t)B()B(t)" ®(to,t)" dt

to

The state equation is controllable on (o, tf) if and only if the
controllability Gramian W (to, t¢) is invertible (W (to,ts) > 0).
Observability Gramian:

ts T 1\ T

to

The system @(t) = A(t)z(t), y(t) = C(t)x(t) is observable on
(to,ty) if and only if M (tg,tf) > 0.
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Controllability and observability: CT-LTI systems

The following four conditions are equivalent (for controllability):
(i) The system #(t) = Az(t) + Bu(t) is controllable.

(i) rank[B AB A?B ... A" 'B] =n.

iy xeC,pTA=XpT, p"B=0 = p=0.

(iv) rank [\ —A B]=n VAeC.

19/26



Controllability and observability: CT-LTI systems

The following four conditions are equivalent (for controllability):

(i) The system #(t) = Az(t) + Bu(t) is controllable.

(i) rank[B AB A?B ... A" 'B] =n.

iy xeC,pTA=XpT, p"B=0 = p=0.

(iv) rank [\ —A B]=n VAeC.

The following four conditions are equivalent (for observability):

(i) The system #(t) = Az(t), y(t) = Cx(t) is observable.

C
CA
(i) rank . =n.
_C’A”_1
(i) AeC: Ap=Ap,Cp=0 =p=0
(iv) rank )\IC’_ 4 =n VAeC.
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Realization

Conditions for realizability (time factorization from weighting pattern):
The weighting pattern G (¢, o) has a realization of dimension n if and
only if there exist matrix functions H (t) € RP*™, F'(t) € R"*™ such
that G(t,0) = H(t)F (o) Vt,o.

Conditions for minimal realisation: the realized linear system is
controllable and observable.

Algorithms for realization: Gilbert realization (partial fraction expansion
of transfer functions), Markov parameters etc.
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Least squares and minimum energy control

Least squares problem I: Minimize | Lu — v| with respect to w.
Solution: Any 4 satisfying the Orthogonality Property
0=< Lz, Lt —v > forall x.
Or equivalently
L*La = L*w

Application: estimating initial state from LTV (LTl) system by output
measurement (under observability condition).

21/26



Least squares and minimum energy control

Least squares problem I: Minimize | Lu — v| with respect to w.
Solution: Any 4 satisfying the Orthogonality Property

0=< Lz, L4 —v > forall z.

Or equivalently

L*Lad = L*w
Application: estimating initial state from LTV (LTl) system by output
measurement (under observability condition).

Least squares problem II: Minimize || under the constraint Lu = v.
Solution: Any @ satisfying L@ = v and the Orthogonality Property
0=<u,u—u> forall uwith Lu = v.

Or, if LL* invertible, equivalently

@ = L*(LL*) 'w (if LL* invertible)

Application: minimum-energy control for LTV (LTI) system with
boundary conditions (under controllability condition).
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Frequency-domain analysis: polynomial matrices

Polynomial matrix fraction descriptions (MFD) for MIMO transfer
functions:

Right polyomial MFD: G(s) = Ng(s)Dg(s)™!.
Left polynomial MFD: G(s) = Dp,(s) 1Ny (s).

Coprime MFDs: unique up to unimodular matrix transformations:
For two coprime right MFDs G/(s) = Ny (s)D; " (s) = Na(s)Dy ' (s)
then there is a unimodular matrix U (s) such that

Ni(s) = Na(s)U(s),  Di(s) = Da(s)U(s)
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Frequency-domain analysis: polynomial matrices

Polynomial matrix fraction descriptions (MFD) for MIMO transfer
functions:

Right polyomial MFD: G(s) = Ng(s)Dg(s)™!.
Left polynomial MFD: G(s) = Dp,(s) 1Ny (s).

Coprime MFDs: unique up to unimodular matrix transformations:
For two coprime right MFDs G/(s) = Ny (s)D; " (s) = Na(s)Dy ' (s)
then there is a unimodular matrix U (s) such that

Ni(s) = Na(s)U(s),  Di(s) = Da(s)U(s)

The left MFD (sI — A)~!Bis coprime <« {4, B} is controllable.
The right MFD C'(sI — A)~tis coprime < {A,C} is observable.
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Frequency-domain analysis: polynomial matrices

Zeros and poles from MIMO transfer functions:
The Smith McMillan form

iag (i)
G(s) = P(s) [d g(ows)) 8] Q(s)

where P, () are unimodular matrices and ¢;, 1; are without common
factors.

Using the Smith McMillan form one can determine

@ The roots of €;(s) as the system (transmission) zeros
@ The roots of ¢;(s) as the system poles

(counted with multiplicities)
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Other topics

Some topics that we do not cover in the course

@ Feedback control (state feedback or output feedback)
@ State observation

@ LQR/LQG optimal control

@ Geometric theory in linear system

You will find them in the two textbooks (Rugh and Hespanha).
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Problems in the final exam will be confined to those presented in the
lecture slides.

Skip the following topics from lecture slides
@ Time-varying transfer functions (for LTV/LTP systems), Lecture 2;
@ Balanced realizations and bonus contents, Lecture 3;

@ Feedback, well-posedness (for internal stability), Lecture 5;

@ Polynomial interpolation/function approximation with LS methods,
Lecture 6.

Final exam will be a 24-hour take-home exam. Date to be determined.
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THE END
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