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Basic Idea of MPC: Receding Horizon Control

1 At time k solve an open loop optimal control problem over a
predefined horizon and apply the first input

2 At time k + 1 repeat the same procedure (the previous optimal
solution can be used as initial guess)

Bellman’s principle of optimality
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Model Predictive Control

Model Predictive Control (MPC)

Uses models explicitly to predict future plant behaviour

Constraints on inputs, outputs, and states are respected

Control sequence is determined by solving an (often convex)
optimization problem each sample

Combined with state estimation

Bo Bernhardsson and Karl Johan Åström Model Predictive Control (MPC)



MPC

Refineries (Shell in 1970s, "Dynamic Matrix Control")

(Bellman), Propoi (1963), Richalet, Prett, Morari, . . .

Main reasons for success
Suitable for multivariable systems
Respects actuator limitations: no integrator wind-up, saturation
problems handled explicitly
Process can be run close to constraints, which is often
cost-effective
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MPC Optimization Criterion

Control changes ∆u(k + i) = u(k + i) − u(k + i − 1) are
optimization variables

J(k) =

Hp+Hw−1
∑

i=Hw

||ẑ(k + i|k) − r(k + i)||2Q +
Hu−1
∑

i=0

||∆u(k + i)||2R

Evaluated signals z = Czx + Dzu

Hw: system time-delay

Hu: cover typical closed loop time constant

Hp: somewhat larger than Hu

Bo Bernhardsson and Karl Johan Åström Model Predictive Control (MPC)



MPC Prediction Horizons (with Hw = 0)

y(k)

ŷ(k)

r(k)

u(k)
u(k)

k k + Hu k + Hp t

Large Hu and Hp give better performance but more computations and
numerical problems
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∆u(k) vs u(k)

Why penalize ∆u(k) instead of u(k)?

Reference r 6= 0 requires u 6= 0 to avoid static error
No need to guess and specify ur

Still possible to penalize u(k), just include u in z-vector

TAT: Do we get integral action by penalizing ∆u instead of u?
Consider y = u + d, do we get y = r in stationarity if d 6= 0?
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MPC Block Diagram (typical)
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Assumed Dynamics

xk+1 = Axk + Buuk + Bvvk + Bwwk

yk = Cxk + Dvvk + Dwwk

where vk is a measured disturbance and wk =

[

dk

ek

]

.
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MPC Prediction Algorithms

Future trajectories starting at time k over the prediction horizon Hp

Assuming v is not known in advance

yk+Hp|k = C



AHpxk +

Hp−1
∑

j=0

AHp−1B(uk−1 +
j

∑

i=0

∆ui)



+DvvHp
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MPC Prediction Algorithms

All Hp predicted time steps can be summarized as
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MPC Prediction Algorithms

...where

Sx =
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CA2
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CAHp































∈ R
Hpny×nx

Su−1 =
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MPC Prediction Algorithms

... and

Su =
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MPC Blocking Factors

At each step the following cost function is minimized

J(k) =

Hp−1
∑

i=k

||ŷ(k+i|k)−r(k+i|k)||2Q +
Hu−1
∑

i=k

||∆u(k+i|k)||2R

Blocking factors can be used to ease the computational
requirements. This means that constraints and cost is only
evaluated at certain time steps, contained in sets Ip and Iu.

J(k) =
∑

i∈Ip

||ŷ(k + i|k) − r(k + i|k)||2Q +
∑

i∈Iu

||∆u(k + i|k)||2R

Move blocking restrictions can also be imposed on the control
signal, so that ∆u = 0 at certain time steps
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MPC Optimization Variables

Introduce the optimization variables, if we have reference control
signals ur

k

eu =
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for control moves and reference tracking
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MPC Optimization Variables

For unconstrained optimization, the cost function is

J(z) = eT
u W 2

u eu + eT
∆uW 2

∆ue∆u + eT
y W 2

y ey

where the first term penalizes control signals, the second penalizes
control moves and the last term penalizes tracking error.

Matrices Wu, W∆u, and Wy are design parameters.

Alternative notation (here without eu)

J(k) =

Hp−1
∑

i=k

||ŷ(k + i|k) − r(k + i|k)||2Q +
Hu−1
∑

i=k

||∆u(k + i|k)||2R

Matrices Q and R are (possibly time-varying) design parameters.
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Constraints

The MPC controller should respect the constraints

∆umin ≤ ∆u(k) ≤ ∆umax

umin ≤ u(k) ≤ umax

zmin ≤ zc(k) ≤ zmax

Some variables might be constrained, but have no reference values

If a constrained variable is not measured, the constraints will be put on
an estimate instead
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Soft or Hard Constraints?

Always need to find a u. Problem if constraints unfeasible.

Replace hard constraints with soft constraints.

Minimize slack variable ǫ ≥ 0 so that
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Relaxation vectors V min > 0, V max > 0 are user defined
parameters. Larger V , more relaxed constraint
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MPC Optimization Constraints

For the constrained case, a suitable MPC cost criterion to be
minimized is

J(z, ǫ) = eT
u W 2

u eu + eT
∆uW 2

∆ue∆u + eT
y W 2

y ey + ρǫǫ
2

subject to dynamics and constraints

A large value of ρǫ penalizes constraint violation harder.

In practice, softening of output constraints is often a good idea.
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MPC Design Parameters

Internal Dynamic Model

(State Estimation Parameters)

Prediction- and Control Horizons

Blocking factors

Weighting Matrices

Constraint Parameters

Sample rate

Integral action? alt. disturbance model
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Quadratic Optimization

The optimization problem is often posed as quadratic
programming

minx
1
2
xT Hx + fT x

subject to Ax ≤ b

In MATLAB: ’quadprog’

Advantages with QP: Fast, reliable software
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Disturbance Models

When solving the optimization problem, predicted future values of
the disturbances are needed

With some knowledge about the nature of the disturbances the
prediction can be improved

Often Gaussian noise and Kalman filter is used

Can also formulate the prediction problem as a QP problem, e.g.
maximizing log-likelihood of measurements

Optimization approach to estimation can e.g. give robustness to
outliers
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State Estimation - Error Update
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d : known disturbance
m : reference model
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MPC Internal Dynamic Model
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State Estimation - Temporal Update
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Software

MPCtools - Developed by Johan Åkesson, Automatic Control,
Lund

Separates measured/constrained/controlled outputs
Integral action by means of disturbance estimation
Different QP-solvers for the optimization problem
Used in Lab 3 i Predictive control

Mathworks - Model Predictive Control Toolbox
GUI or text-based control design
Integrated observer design and basic disturbance modeling

MPT - Multi-Parametric Toolbox for Matlab from ETH
Supports linear, nonlinear, and hybrid system descriptions
Explicit MPC

CVX+CVXGen: MPC code generator, runs typically on micro or
millisec for small size problems. Nice project!
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MPC Toolbox

Model assumptions in MPC toolbox

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k) + Dzu(k)

zc(k) = Ccx(k) + Dcu(k)

Measured outputs y

Controlled outputs z

Constrained outputs zc

(no known disturbances)
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MPCTool - Control Problem

Cost function

J(k) =

Hp+Hw−1
∑

i=Hw

‖ẑ(k + i|k) − r(k + i|k)‖2

Q+
Hu−1
∑

i=0

‖∆u(k + i|k)‖2

R

(1)

Prediction Horizon, Hp

Control Horizon, Hu

First sample to be included, Hw
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Solving the Quadratic Program (QP)

One can rewrite the optimization criterion on the form

min J(k) = ∆UT H∆U − ∆UT G + ET QE

subject to Ω∆U ≤ ω

where ∆U , H, G, E , Q, Ω, ω are large vectors/matrices, used to stack
up the equations above for all time indices.

Details are in the MPC toolbox manual, but will not be needed

Convex problem - efficient algorithms
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State Estimation

Use a traditional Kalman filter, having the form

x̂(k + 1) = Ax̂(k) + Bu(k) + K(y(k) − Cyx̂(k)).

Gain matrix K obtained by solving a Riccati equation

(information about state constraints are not utilized in MPCTool)
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Error-free tracking - Integral Action 1

One option is to use a disturbance observer

A step disturbance is assumed to act on the input, the following
extended model is then used (when r = 0):
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Using an observer with this model structure will introduce integral
action giving z = 0 in stationarity.

If more outputs than inputs, one must introduce constant output
disturbances vk on the outputs ya that shouldn’t get integral action

If nr inputs = nr outputs one doesn’t need ya and vk
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Error-free tracking - Integral Action 2

Another option is to add integrator states in the model
[

x(k + 1)
xi(k + 1)

]

=

[

A 0
−Cz I

]

x(k) +

[

B

0

]

u(k) +

[

0
I

]

r(k)

y(k) =
[

Cy 0
]

z(k) =
[

Cz 0
]

A stabilizing feedback is calculated using the extended state. Note that
the state xi need not be estimated, since it is known perfectly by the
controller

Polynomial design interpretation to the two methods

A(q − 1)R′ + BS = AmAoB+

where either Ao (previous slide) or Am (this slide) has an increased
order compared to the minimal order
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Linear Properties of the MPC Controller

The MPC controller is nonlinear, because of constraints on state and
control

However, if the constraints are not active, the controller is linear

The minimizing solutions of the unconstrained QP is then

∆U(k) = (ΘT QΘ + R)−1ΘT QE(k)

= . . .

= K̄s







r(k)
u(k − 1)

x̂(k)







for some vector K̄s
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Linear Properties of the MPC Controller

This means the control law can be written

∆u(k) =
[

Ksr Ksu Ksx

] [

rT (k) uT (k − 1) x̂T (k)
]T

where
[

Ksr Ksu Ksx

]

is given by the first m rows of K̄s

This means that with

P (z) = Cy(zI − A)−1B

H(z) = −KsxHy(z)

Hy(z) = (zI − A + KCy)−1K

Hu(z) = (zI − A + KCy)−1B

we get the following figure

Bo Bernhardsson and Karl Johan Åström Model Predictive Control (MPC)



Linear Properties of the MPC Controller

−
Ksr

Ksu

−Ksx

Ksx

P (z)

Hu(z)

Hy(z)

r(k) ∆u(k) u(k) y(k)

z−1I

z
z−1 I

Equivalent linear timeinvariant controller

K(z) =
z

z − 1

[

I −
1

z − 1
Ksu −

z

z − 1
KsxHu(z)

]−1
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MPC Tools

MPC controller calculate ,simulate and evaluate in Matlab/Simulink

Good QP solver implementations with active set and interior point
methods

Main commands: MPCInit (output: data-structure "md"), MPCSim,
MPCController, MPCfrsp

Mode 0: State feedback.

Mode 1: State feedback with explicit integrators.

Mode 2: Observer-based output feedback.

Mode 3: Observer-based output feedback with explicit
integrators.

Mode 4: Observer-based output feedback with a disturbance
model that gives error free tracking.

Bo Bernhardsson and Karl Johan Åström Model Predictive Control (MPC)



MPC Tools

Figure: A Simulink model where the MPC controller is used to control a
nonlinear plant.
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Example - Quad Tank

Tank 2Tank 1

Tank 3 Tank 4replacements

u1
u2

γ1 γ2

1 − γ1 1 − γ2

Pump 1 Pump 2

Challenging MIMO process. Parameters γ1, γ2 control the flow
structure to the upper and lower tanks respectively

Non-minimum phase dynamics if e.g. γ1 = γ2 = 0.3

See e.g. MPCTools manual for a model
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MPC Controller Parameters

Parameter Value
h sampling rate = 3 sec
Hp 30
Hw 1
Hu 10
Ip blocking factor 2
Iu blocking factor 2
Q diag(4, 1)
R diag(0.01, 0.01)
W diag(1, 1, 1, 1)/diag(1, 1, 1, 1, 1, 1)
V diag(0.01, 0.01)

Constraints: 0 ≤ x ≤ 19.8 cm on all tanks
0 ≤ u ≤ 10 V on both pumps
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Typical Code

% Some initialisation of matrices left out here

Hp = 30; % Prediction horizon

Hu = 10; % Horizon for varying input signal

Hw = 1; % First penalty sample

zblk=2;

ublk=2;

Q = diag([4 1]);

R = 0.01*diag([1 1]);

W = diag([1 1 1 1]);

V = diag(0.01*ones(1,2));

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...

du_max,du_min,u_max,u_min,z_max, ...

z_min,Q,R,W,V,h,2,’qp_as’);

MPCfrsp(md,10);

[x,u,y,z,zp,up] = MPCSim(md,s,d);

% Plotting left out here
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Results, simulation on linearized plant
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Results, simulation on nonlinear plant
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Results, MPC linear behavior

Without the contraints, the MPC controller gives the following gain
curves. The plots show singular values for the 2 × 2 system.
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Explicit MPC

For applications where very short sample times are required,
there may not be time to solve the optimization problem at each
time step.

Explicit MPC calculates a state feedback law that is equivalent to
MPC in a specific region of the state-space

As constraints are activated, the feedback law changes in
different parts of the state-space

Certainty equivalance used u = −K(x̂)x̂
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Explicit MPC Example

For the plant

Y (s) =
1

s + 1
U(s)

with constraints

−3 ≤ y(t) ≤ 3

−0.1 ≤ u(t) ≤ 0.1

−0.05 ≤ ∆u(t) ≤ 0.05

the regions might look like...
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Explicit MPC Example
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CVXGEN

Developed at Stanford

CVXGEN generates fast custom code for small, QP-representable
convex optimization problems, using an online interface with no
software installation. With minimal effort, turn a mathematical problem
description into a high speed solver.

See http://cvxgen.com/
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CVXGEN

Describe your small, quadratic program (QP) representable
problem with a simple, powerful language.

CVXGEN automatically creates library-free C code for a custom,
high-speed solver. This can be downloaded and used
immediately, and requires nothing but a C compiler. CVXGEN
also supplies a Matlab function that, with one command,
downloads and builds a custom Matlab mex solver.

CVXGEN performs most transformations and optimizations
offline, to make online solution as fast as possible. Code
generation takes a few seconds or minutes, producing solvers
that work in microseconds or milliseconds. Compared with
generic code (CVX), solution times are typically at least 20 times
faster, with the smallest problems showing speedup as large as
10,000x
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CVXGEN: MPC Example
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CVXGEN: MPC Example - Input Code
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