Extremum-seeking Control

Tommi Nylander and Victor Millnert

May 25, 2016

Short introduction

- Non-model based real-time optimization
${ }^{1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

Short introduction

- Non-model based real-time optimization
- When limited knowledge of the system is available
- E.g. a nonlinear equilibrium map with a local minimum

[^0]
Short introduction

- Non-model based real-time optimization
- When limited knowledge of the system is available
- E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950s

[^1]
Short introduction

- Non-model based real-time optimization
- When limited knowledge of the system is available
- E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950 s
- Revival with proof of stability ${ }^{1}$

[^2]
Short introduction

- Non-model based real-time optimization
- When limited knowledge of the system is available
- E.g. a nonlinear equilibrium map with a local minimum
- Popular around the middle of the 1950s
- Revival with proof of stability ${ }^{1}$
- Very attractive with the increasing complexity of engineering systems

[^3]
Examples of application

- active flow control
- aeropropulsion
- colling systems
- wind energy
- human exercise machines
- optimizing the control of non-isothermal valve actuator
- timing control of HCCl engine combustion
- formation flight optimization
- beam matching adaptive control
- optimizing bioreactors
- control of beam envelope in particle accelerators

Problem statement

Consider a SISO nonlinear model

$$
\begin{align*}
& \dot{x}=f(x, u), \tag{1}\\
& y=h(x) \tag{2}
\end{align*}
$$

- $x \in \mathbb{R}^{n}$ is the state
- $u \in \mathbb{R}$ is the input
- $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ and
$h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth

Problem statement

Consider a SISO nonlinear model

$$
\begin{align*}
& \dot{x}=f(x, u), \tag{1}\\
& y=h(x) \tag{2}
\end{align*}
$$

- $x \in \mathbb{R}^{n}$ is the state
- $u \in \mathbb{R}$ is the input
- $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ and
$h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth

Suppose that we know a control-law

$$
\begin{equation*}
u=\alpha(x, \theta) \tag{3}
\end{equation*}
$$

parametrized by a scalar parameter θ.

- assume static state-feedback law
- assume scalar θ and y,

Problem statement

Consider a SISO nonlinear model

$$
\begin{align*}
& \dot{x}=f(x, u), \tag{1}\\
& y=h(x) \tag{2}
\end{align*}
$$

- $x \in \mathbb{R}^{n}$ is the state
- $u \in \mathbb{R}$ is the input
- $y \in \mathbb{R}$ is the output (or the performance function
- $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ and
$h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth

Suppose that we know a control-law

$$
\begin{equation*}
u=\alpha(x, \theta) \tag{3}
\end{equation*}
$$

parametrized by a scalar parameter θ.

- assume static state-feedback law
- assume scalar θ and y,

The closed-loop system

$$
\dot{x}=f(x, \alpha(x, \theta))
$$

has equilibria parametrized by θ.

Problem statement - assumptions

Assumption

- We have a control law designed for local stabilization. This control law need not be based on modeling knowledge of $f(x, u)$.

Problem statement - assumptions

Assumption

- We have a control law designed for local stabilization. This control law need not be based on modeling knowledge of $f(x, u)$.
- There exists a $\theta^{*} \in \mathbb{R}$ such that

$$
\begin{align*}
& (h \circ I)^{\prime}\left(\theta^{*}\right)=0, \tag{4}\\
& (h \circ I)^{\prime \prime}\left(\theta^{*}\right)>0 \tag{5}
\end{align*}
$$

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with $a \sin (\omega t)$

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with a $\sin (\omega t)$
- Low-pass filter to estimate the gradient $\xi \approx \partial y / \partial \theta$

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with a $\sin (\omega t)$
- Low-pass filter to estimate the gradient $\xi \approx \partial y / \partial \theta$
- $\xi<0: a \sin (\omega t)$ and $(y-\eta)$ out of phase

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with a $\sin (\omega t)$
- Low-pass filter to estimate the gradient $\xi \approx \partial y / \partial \theta$
- $\xi<0: a \sin (\omega t)$ and $(y-\eta)$ out of phase
- $\xi>0$: $a \sin (\omega t)$ and $(y-\eta)$ in phase

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with a $\sin (\omega t)$
- Low-pass filter to estimate the gradient $\xi \approx \partial y / \partial \theta$
- $\xi<0: a \sin (\omega t)$ and $(y-\eta)$ out of phase
- $\xi>0$: $a \sin (\omega t)$ and $(y-\eta)$ in phase
- $\hat{\theta}$ is the best estimate of θ^{*}

The feedback scheme

- Perturb the plant with a slow periodic signal a $\sin (\omega t)$
- High-pass filter the output: $y-\eta$
- Multiply with a $\sin (\omega t)$
- Low-pass filter to estimate the gradient $\xi \approx \partial y / \partial \theta$
- $\xi<0: a \sin (\omega t)$ and $(y-\eta)$ out of phase
- $\xi>0$: $a \sin (\omega t)$ and $(y-\eta)$ in phase
- $\hat{\theta}$ is the best estimate of θ^{*}
- $\hat{\theta} \approx \theta^{*}$ when $\xi=0$

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal
- ω_{h} - The cut-off frequency of the high-pass filter

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal
- ω_{h} - The cut-off frequency of the high-pass filter
- ω_{l} - The cut-off frequency of the low-pass filter

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal
- ω_{h} - The cut-off frequency of the high-pass filter
- ω_{l} - The cut-off frequency of the low-pass filter
- k - The integrator gain

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal
- ω_{h} - The cut-off frequency of the high-pass filter
- ω_{l} - The cut-off frequency of the low-pass filter
- k - The integrator gain

The design parameters

The design challenge lies in deciding the values of:

- a - The amplitude of the perturbation signal
- ω - The frequency of the perturbation signal
- ω_{h} - The cut-off frequency of the high-pass filter
- ω_{l} - The cut-off frequency of the low-pass filter
- k - The integrator gain

General advise: Keep all parameters small!

A simulation example - the performance function

- Local minimum $f(-1)=1$, local maximum $f(-3 / 4)=261 / 256$ and global minimum $f(1)=-3$
- Simulations performed with $\omega_{l}=\omega_{h}=1, k=-0.8$ and $\omega=3$, $a=0.1$ or 0.3
- Simulations initialized both at $\theta=0$ and $\theta=-1.5$

Speed of convergence vs resulting oscillations

Figure: Simulations performed with perturbation amplitude $a=0.1$.

Figure: Simulations performed with perturbation amplitude $a=0.3$.

Movie time!

Reaching the global minimum I

Figure: High-pass filtered output (blue) and perturbation signal (red).

Figure: Estimated gradient over time.

Reaching the global minimum II

Figure: Simulations performed with perturbation amplitude $a=0.1$.

Figure: Simulations performed with perturbation amplitude $a=0.3$.

Questions?

Class dismissed!

[^0]: ${ }^{1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

[^1]: ${ }^{1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

[^2]: ${ }^{1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

[^3]: ${ }^{1}$ M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000

