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Short introduction

I Non-model based real-time optimization

I When limited knowledge of the system is available
I E.g. a nonlinear equilibrium map with a local minimum

I Popular around the middle of the 1950s

I Revival with proof of stability 1

I Very attractive with the increasing complexity of engineering systems

1M.Krstić H.Wang, Stability of extremum seeking feedback for general nonlinear
dynamic systems, Automatica 36, 2000
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Examples of application

I active flow control

I aeropropulsion

I colling systems

I wind energy

I human exercise machines

I optimizing the control of non-isothermal valve actuator

I timing control of HCCI engine combustion

I formation flight optimization

I beam matching adaptive control

I optimizing bioreactors

I control of beam envelope in particle accelerators
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Problem statement

Consider a SISO nonlinear model

ẋ = f (x , u), (1)

y = h(x) (2)

I x ∈ Rn is the state

I u ∈ R is the input

I y ∈ R is the output (or the
performance function

I f : Rn × R→ Rn and
h : Rn → R are smooth

Suppose that we know a control-law

u = α(x , θ) (3)

parametrized by a scalar parameter
θ.

I assume static state-feedback
law

I assume scalar θ and y ,

The closed-loop system

ẋ = f (x , α(x , θ))

has equilibria parametrized by θ.
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Problem statement - assumptions

Assumption

I We have a control law designed for local stabilization. This control
law need not be based on modeling knowledge of f (x , u).

I There exists a θ∗ ∈ R such that

(h ◦ l)′(θ∗) = 0, (4)

(h ◦ l)′′(θ∗) > 0 (5)
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The feedback scheme
I Perturb the plant with a slow periodic signal a sin(ωt)

I High-pass filter the output: y − η
I Multiply with a sin(ωt)
I Low-pass filter to estimate the gradient ξ ≈ ∂y/∂θ

I ξ < 0: a sin(ωt) and (y − η) out of phase
I ξ > 0: a sin(ωt) and (y − η) in phase

I θ̂ is the best estimate of θ∗

I θ̂ ≈ θ∗ when ξ = 0

ẋ = f(x, α(x, θ))

y = h(x)

ωl

s+ωl

k
s

× s
s+ωh

+

y

y − ηξθ̂

θ

a sin(ωt)
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The design parameters

The design challenge lies in deciding the values of:

I a - The amplitude of the perturbation signal

I ω - The frequency of the perturbation signal

I ωh - The cut-off frequency of the high-pass filter

I ωl - The cut-off frequency of the low-pass filter

I k - The integrator gain

General advise: Keep all parameters small!
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A simulation example - the performance function
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f (θ) = θ4 + θ3 − 2θ2 − 3θ

I Local minimum f (−1) = 1, local maximum f (−3/4) = 261/256
and global minimum f (1) = −3

I Simulations performed with ωl = ωh = 1, k = −0.8 and ω = 3,
a = 0.1 or 0.3

I Simulations initialized both at θ = 0 and θ = −1.5
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Speed of convergence vs resulting oscillations
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Figure: Simulations performed with perturbation amplitude a = 0.1.
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Figure: Simulations performed with perturbation amplitude a = 0.3.
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Movie time!
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Reaching the global minimum I
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Figure: High-pass filtered output (blue) and perturbation signal (red).
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Figure: Estimated gradient over time.
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Reaching the global minimum II
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Figure: Simulations performed with perturbation amplitude a = 0.1.
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Figure: Simulations performed with perturbation amplitude a = 0.3.
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Questions?
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Class dismissed!
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