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Linear Quadratic Gaussian Design

Process model

ẋ = Ax+ Bu+ v

y = Cx+ Du+ w

where v,w is white gaussian noise with mean zero
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Optimization criterion
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Short on Stochastics

ẋ = Ax+ v

y = Cx+ e

v white noise, Ev(t)vT(t−τ ) = R1δ(τ )
e white noise, Ee(t)eT(t−τ ) = R2δ(τ )
State covariance

Ex(t)xT(t) = R(t), Ṙ = AR + R AT + R1

Kalman filter, ˙̂x = Ax̂+ L(y− Cx̂)
x̃ = x− x̂, Ex̃(t)x̃T(t) = P(t)
Ṗ = AP + P AT + R1 − PCT R−1

2 C P, L = PCT R−1

2
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Separation Principle

Process

Kalman Filter

K

Nice structure of the optimal controller: u = −K x̂

Linear feedback combined with state estimation

Certainty equivalence principle
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Linear Quadratic Gaussian Design - History

In the late 50s and early 60s computers where starting to be used to find
“optimal” controllers.

Classical Reference: Newton, Gould, Kaiser (1957)

Wiener-Kolmogorov

Kalman-Bucy

Bellman, Wonham, Willems, Andersson, Åström, Kucera and many others
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Why so popular?

Gives “optimal” controller

Automized design method. Works for MIMO.

Nice formulas for the optimal controller, reasonable computational effort

Gives absolute scale of merit - know limits of performance

Used for space program, aircraft design - Good models often available

LQ control give good robustness margins (with Q12 = 0)

[1/2,∞]-gain margin

60 degree phase margin
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LQG is optimizing the H2 norm

Consider the system

Y = G(s)U
y = � ⋆ u

ẋ = Ax+ Bu

y = Cx+ (Du)

The L2-norm (LQG-norm) is defined as

qGq2

2 =
∑

i

∑

j

∫∞

−∞
pGi j( jω)p2dω/2π =

=
∫∞

−∞
trace {G∗( jω)G( jω)}dω/2π

H2: Equals L2-norm if G asymptotically stable, equals∞ otherwise
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H2-norm as noise power gain

u y

u: stationary white noise, mean zero

E(u(τ1)u(τ2)T) = δ(τ1 −τ2)I
Su(ω) = 1,∀ω

then Pow(y) = E(yT y) = qGq2
2.

”Amplification of noise power”

Bo Bernhardsson, K. J. Åström Control System Design - LQG



Proof

E(tr yyT) = tr

∫

Sy(ω)dω/2π =

=
∫

tr G∗( jω)Su(ω)G( jω)dω/2π

= qGq2

2
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Another interpretation of the H2-norm

By Parseval’s formula we have

qGq2

2 =
∑

i

∑

j

∫∞

−∞
p� ji(t)p2dt

Hence the H2-norm can also be interpreted as “energy in impulse
responses”:

y=g
:,i

(t)ui= δi(t)
G

qGq2

2 =
m∑

i=1

∫∞

0

p�:,ip2(t)dt
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How to compute the H2 norm

1) norm(sys) in Matlab

2) If G(s) = C(sI − A)−1B then

qGq2

2 = trace (C PCT) = trace (BT SB)

where P is the unique solution to the Lyapunov equation

AP + P AT + BBT = 0

and S solves
S A+ AT S + CTC = 0

3) Residue calculus

qGq2

2 =
∑

i, j

1

2πi

∮

Gi j(−s)TGi j(s)ds

4) Recursive formulas ala Åström-Jury-Schur
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A unified framework

K

w

y
G

z

u

u = Control inputs

y = Measured outputs

w = Exogenous inputs =





Fixed commands
Unknown commands
Disturbances
Noise . . .

z = Regulated outputs =





Tracking errors
Control inputs
Measured outputs
States . . .
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The H2 Problem

Closed Loop

u = K(s)y
z = G11 + G12 K(I − G22 K)−1G21w = Tzww

The H2 problem:

Find K(s) such that the closed loop is stable and

min
K(s)

qTzwq2

is obtained.

Bo Bernhardsson, K. J. Åström Control System Design - LQG



The Optimal Controller

ẋ = Ax+ B1w+ B2u

z = C1 x+ D12u

y = C2 x+ D21w+ D22u

Under some technical conditions the optimal controller is

u = −K x̂

˙̂x = Ax̂+ B2u+ L(y− C2 x̂− D22u)
K = (DT

12 D12)−1(DT
12C1 + BT

2 S)
L = (B1 DT

21 + PCT
2 )(D21 DT

21)−1

where P ≥ 0 and S ≥ 0 satisfy

0 = S A+ AT S + CT
1 C1 − KT DT

12 D12 K

0 = AP + P AT + B1 BT
1 − LD21 DT

21 LT

A− B2 K, A− LC2 stable
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The Optimal Controller

u = −K(sI − A+ B2 K + LC2 − LD22 K)−1Ly

Controller has same order as process

(How to introduce reference signals later)

Bo Bernhardsson, K. J. Åström Control System Design - LQG



“Technical Conditions”

1) [A, B2] stabilizable

2) [C2, A] detectable

3) “No zeros on imaginary axis” u → z

rank


 jω I − A −B2

C1 D12


 = n+m ∀ω

and D12 has full column rank (no free control)

4) “No zeros on imaginary axis” w → y

rank


 jω I − A −B1

C2 D21


 = n+ p ∀ω

and D21 has full row rank (no noise-free measurements)
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Alternative formulation

Weight matrices


Q11 Q12

QT
12 Q22


 =


 CT

1

DT
12





C1 D12





R11 R12

RT
12 R22


 =


 B1

D21





BT

1 DT
21




If Q12 = 0 then the notation Q1 and Q2 is sometimes used instead,
similar for R
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Software

Matlab - Control system toolbox

lqr, dlqr - Linear-quadratic (LQ) state-feedback regulator

lqry - LQ regulator with output weighting

lqrd - Discrete LQ regulator for continuous plant

kalman - Kalman estimator

kalmd - Discrete Kalman estimator for continuous plant

lqgreg - LQG regulator from LQ gain & Kalman estimator
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Matlab “LQR”

LQR Linear-quadratic regulator design for state space systems.

[K,S,E] = LQR(SYS,Q,R,N) calculates the optimal

gain matrix K such that:

* For a continuous-time state-space model SYS, the

state-feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + u’Ru + 2*x’Nu} dt

subject to the system dynamics dx/dt = Ax + Bu
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Matlab “Kalman”

KALMAN Continuous- or discrete-time Kalman estimator.

[KEST,L,P] = KALMAN(SYS,QN,RN,NN) designs a Kalman

estimator KEST for the continuous- or discrete-time

plant with state-space model SYS. For a continuous-time model

.

x = Ax + Bu + Gw {State equation}

y = Cx + Du + Hw + v {Measurements}

with known inputs u, process noise w, measurement noise v, and

noise covariances

E{ww’} = QN, E{vv’} = RN, E{wv’} = NN,

By default, SYS is the state-space model SS(A,[B G],C,[D H])

Bo Bernhardsson, K. J. Åström Control System Design - LQG



Matlab “LQGREG”

LQGREG Form linear-quadratic-Gaussian (LQG) regulator

RLQG = LQGREG(KEST,K) produces an LQG regulator by

connecting the Kalman estimator KEST designed with KALMAN

and the state-feedback gain K designed with (D)LQR or LQRY:

+----------------------------+

u | |

| +------+ |

+--->| | x_e +----+ |

| KEST |------>| -K |---+-----> u

y -------->| | +----+

+------+

The resulting regulator RLQG has input y and generates the

commands u = -K x_e where x_e is the Kalman state estimate

based on the measurements y. This regulator should be

connected to the plant using positive feedback.
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Example

Consider the following system from the pole placement lecture

G(s) = 1+ 0.5s

s2

The following controller is suggested in Åström-Murray “Feedback
Systems” p. 363

C(s) = 3628
s+ 11.02

(s+ 2)(s+ 78.28)

To construct an LQG controller we write the system on state space form

ẋ =

0 0

1 0


 x+


1

0


 u+ Gw

y =

0.5 1


 x+ Hw+ v
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Example - slow process zero

A = [0 0 ; 1 0];

B = [1 ; 0];

C = [0.5 1];

D = 0;

sys = ss(A,B,C,D);

Q=diag([0 1]);

R=1e-5;

[k,s,e]=lqr(A,B,Q,R);

G=B;

H=0;

QN = 1;

RN = 1e-5;

syse = ss(A,[B G],C,[D H]);

[kest,l,p]=kalman(syse,QN,RN);

rlqg = lqgreg(kest,k);

PC = -rlqg*sys;
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Result

Q11 = dia�([0 1]), Q22 = 10
−5, R11 = dia�([0 1]), R22 = 10

−5
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Larger high-frequency gain for LQG(blue) than default controller(red)
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Result

Increased meas noise R22 := 7 · 10
−5 and Q22 = 0.7 · 10

−5
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LQG now gives same controller as was obtained by pole-placement design
earlier
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Obsolete LQG Software - use at your own risk

Matlab - robust control toolbox and mutools

h2lqg - continuous time H_2 synthesis.

dh2lqg - discrete time H_2 synthesis.

normh2 - calculate H_2 norm.

lqg - LQG optimal control synthesis.

ltru - LQG loop transfer recovery.

ltry - LQG loop transfer recovery.

h2syn - H_2 control design

Department “LQGBOX” TFRT-7575

oldboxes (this might not work anymore)

[K,S] = lqrc(A,B,Q1,Q2,Q12)

[L,P] = lqec(A,C,R1,R2,R12)

kr = refc(A,B,C,D,K)

[Ac,By,Byr,Cc,Dy,Dyr] = lqgc(A,B,C,D,K,kr,L)

lqed, lqrd, refd, lqgd in discrete time
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Robustness

As we will see, LQ-control u = −Lx automatically gives amazing
robustness properties: Infinite gain margin and 60 degrees phase margin

(Warning: Only if one uses block diagonal weights !)

Critique: Rosenbrock, McMorran: Good, bad or optimal, IEEE-AC 1971.
Horowitz.
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Properties of LQ control

When all states can be measured, we have nice robustness properties

Loop Gain: K(sI − A)−1B

Return Difference: I + K(sI − A)−1B

Compare with LQG (if D = 0)

Loop Gain: C(sI − A)−1BK(sI − A+ BK + LC)−1L

(remark on notation: B = B2 on the LQ slides below)
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Return Difference Formula

From Riccati equation (nice matrix exercise):

MT(−s)M(s) =
(I + K(−sI − AT)−1B)T DT

12 D12(I + K(sI − A)−1B)

where M(s) = D12 + C1(sI − A)−1B

If no crossterms:

If CT
1 C1 = Q1, CT

1 D12 = 0 and DT
12 D12 = Q2

Q2 + BT(−sI − AT)−1Q1(sI − A)−1B =
(I + K(−sI − AT)−1B)T Q2(I + K(sI − A)−1B)

This is the return difference formula for LQ
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Consequences of RDF

(I + K(−sI − AT)−1B)T Q2(I + K(sI − A)−1B) ≥ Q2

For scalar system this becomes

q2p1+ K(sI − A)−1Bp2 ≥ q2

therefore
p1+ K(sI − A)−1Bp ≥ 1

Ms ≤ 1

Bo Bernhardsson, K. J. Åström Control System Design - LQG



LQ Margins, Scalar case

Ms ≤ 1

Disturbance rejection performance improved for all frequencies

Gain Margin [1/2,∞], Phase Margin≥ 60 degrees.

Circle criterion: Stability under feedback with any nonlinear time-varying
input gain with slopes in (1/2,∞).
Requirements: No cross-terms, Q12 = 0. All states measurable.

TAT: Why isn’t this a violation of Bode’s integral formula?
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LQ Gain Margin, MIMO

With
Si( jω) = (1+ K(sI − A)−1B)−1

σ̄ (Q1/2
2 Si( jω)Q−1/2

2 ) ≤ 1

If Q2 diagonal this gives nice MIMO gain/phase margins, see LQG course.
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High Frequency Behaviour of LQ control

If Q12 = 0 then for large ω

K( jω I − A)−1B ∼ K B/ω = Q−1

2 BT SB/ω

LQ-controller gives loop gain with roll-off 1 (unless K = 0)

Same conclusion for

K( jω I − A+ BL)−1 B ∼ K B/ω = Q−1

2 BT SB/ω

Intution for the future: If the open loop system has roll-off larger than 1,
then if one forces the LQG loop gain to approach the LQ loop gain, the
LQG controller will have large high-frequency gain
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Robustness of LQG

Kalman filter producing x̂ has similar (dual) robustness properties

Since the LQG controller combines two robust parts: LQ control and
Kalman filtering, it was for a long time hoped that robustness margins for
the LQG controller would eventually be found

But, output feedback u = −Lx̂ was surprisingly (?) found to have no
automatic guarantees for robustness

This was a dissappointment, especially for people hoping to automize
design

Turned attention towards robust control, e.g. H∞ in the 80s
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Example - Doyle IEEE TAC 1978


ẋ1

ẋ2


 =


1 1

0 1





x1

x2


+


0

1


 u+


1

1


 v

y =

1 0





x1

x2


+

√
σw

min E[(x1 + x2)2 + ρu2]

Bo Bernhardsson, K. J. Åström Control System Design - LQG



Example Doyle IEEE TAC 1978

A = [1 1; 0 1];

B2 = [0 ; 1];

B1 = [1; 1];

C2 = [1 0];

C1 = [1 1];

G = B1;

H = 0*C2*B1;

sys=ss(A,B2,C2,0);

syse=ss(A,[B2 G],C2,[0 H]);

rho=1;sigma=1;

[K,S,E] = lqr(A,B2,C1’*C1,rho);

[Kest,L,P] = kalman(syse,1,sigma);

rlqg = -lqgreg(Kest,K);

loopgain = sys*rlqg;
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Doyle’s counter example

Loop gain with ρ = σ =1 (blue), 0.01(red), 0.0001(black)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Infinitly small gain and phase margins when ρ and σ become small
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The symmetric root locus

Assume Q11 = CTC, Q12 = 0, Q22 = ρ I, then for SISO systems

G(s) = C(sI − A)−1B =:
B(s)
A(s)

I + H(s) := I + K(sI − A)−1B =:
P(s)
A(s)

Closed loop characteristic equation P(s) = 0 (TAT: Why?)

Riccati equation gives (return difference formula)

Q2 +G(−s)G(s) = (I + H(−s))Q2(I + H(s))
ρ A(−s)A(s) + B(−s)B(s) = ρ P(−s)P(s)

symlocc, symlocd in matlab (oldboxes)
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Symmetric Root Locus

Symmetric root loci for G(s) = s+10

s2(s2+0.1s+1) and G(s)/s.

oldboxes;robotdata

[b,a]=tfdata(sys2);b=b{1};a=a{1};

locus=symlocc(b,a,1e-6,1e10,0.003);

plot(locus(:,2:end),’b’,’Linewidth’,2)
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Cheap control ρ → 0

ρ A(−s)A(s) + B(−s)B(s) = ρ P(−s)P(s)

Eigenvalues of closed loop tend to stable zeros of B(−s)B(s) and the
rest tend to∞ as stable roots of

s2d = const · ρ
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An interesting formula - cheap control

min

∫∞

0

py(t) − 1p2dt = 2

∑

Rez j>0

Re
1

z j

where the sum is over all non-minimum phase zeros.

Reference: Qui-Davison, Automatica 1993 pp. 337-349

TAT: Where have you seen something similar before?
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Expensive control ρ →∞

ρ A(−s)A(s) + B(−s)B(s) = ρ P(−s)P(s)

Eigenvalues of closed loop tend to stable zeros of A(−s)A(s)
Example

min u2, ẋ = x+ u

A(s) = s− 1 unstable.

Optimal controller u = −2x gives

ẋ = −x

P(s) = s+ 1
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Energy minimizing stabilization

Consider the system

ẋ = Ax+ B(u + w), u = −K x

where w is unitary white noise.

The minimal control effort needed to stabilize the system is

min Epup2 = 2

∑

Re p>0

Re p

where the sum is over all unstable poles (exercise).

The optimal closed loop system A− BK has eigenvalues in the open
loop stable poles and the mirror image of the open loop unstable poles.

“The cheapest way to stabilize an unstable pole is to mirror it”
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How to tune the weights

Having a state-space realization where the states have a physical meaning
aids the intuition

It is helpful to choose scalings so that all interesting signal levels are
roughly the same size

Q1 incr, or Q2 decr. gives faster control

R1 incr, or R2 decr. gives faster observer
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(Bryson’s) rule of thumb

Q1 = diag(α1, . . . , αn)
Q2 = diag(β1, . . . , βm)

Let αi ∼ (xi)−2 and βi ∼ (ui)−2 where xi and ui denote allowable
sizes on state i and input i

Similar intuition for the noise weights R1 and R2.

Note that multiplying all elements of Q by the same factor does not change
the controller. Similar for the R matrices.
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Tuning Tricks

Introducing an extra punishment of

(ẋi +αxi)2

should move the system closer to ẋi = −αxi.

Gives cross-terms
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Another tuning trick

G(s) = 1

(s+ 1)(s2 + 1)

Want to increase damping without moving the pole in s = −1.

This can be achieved by weights that are zero on the eigendirections to
s = −1.
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Example -continued

s =

0.7071 0.7071 0.4082

0 + 0.7071i 0 - 0.7071i -0.4082

0 0 0.8165

d =

0 + 1.0000i 0 0

0 0 - 1.0000i 0

0 0 -1.0000

Q1 = qiq
T
i , q1 =




1

1

0


 , q2 =




2

0

−1




−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Example Aircraft - wind gust turbulence

Taken from Anderson-Moore Optimal Control Linear Quadratic Methods,
pp.222-224

6 state model of aircraft subject to wind gust turbulence
ẋ = Ax+ Bu + Bvv, y = Cx+w

Two outputs yf and ya forward and aft accelerations, one input

Open loop resonances at 1.6 and 21 rad/s

A =




−3 · 10
−8

0

−7 · 10
−3 

−0.12 1.57

−1.57 −0.12




0


−0.71 21.3

−21.3 −0.71







See home page for full model
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Open Loop

Turbulence without a controller

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Frequency rad/s

P
o

w
er

 s
p

ec
tr

al
 d

en
si

ty

Open loop

yf (blue) and ya (green)
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Design 1

min E[y2

f + y2

a + 0.2u2]
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Design 1
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Design 1

Want to increase damping of resonance at 1.5 rad/s

Penalise x3 and x4 more
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Design 2

min E[y2

f + y2

a + 4x2

3 + 4x2

4 + u2]
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Design 2
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Design 2

Big improvement at 1.5rad/s

But is Andersson-Moore’s Design 2 any good?
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Comparison Design 1 vs 2
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Design 1(blue) vs 2(red)

Design 2 has much more control effort around 1.5 rad/s

But that’s perhaps ok. But how about robustness?
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Comparison Design 1 vs 2
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Andersson-Moore’s design 2 has very bad robustness margins, e.g.
Ms ∼ Mt ∼ 20.

A change in process gain of 5 % gives an unstable loop

Conclusion: Even the masters can make a bad design with LQG. No
guarantees for robustness.
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Lecture - LQG Design

Introduction

The H2-norm

Formula for the optimal LQG controller

Software, Examples

Properties of the LQ and LQG controller

Design tricks, how to tune the knobs

Next lecture

What do the “technical conditions” mean?

How to get integral action etc

Loop Transfer Recovery (LTR)

More Examples
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