Rootlocus

Gautham

Department of Automatic Control

Rootlocus Method (Rotortmetoden)

Plotting of the root locus

The Rootlocus Method(Rotortmetoden)

Introduction

- Graphical method of solving algebraic equations introduced by Walter R.Evans. in 1948.
- Instead of solving equations for fixed values of parameters, the equation is solved for all values of any parameters(or their combination).
- An algebraic equation $A(s)=s^{n}+a_{1} s^{n-1}+a_{2} s^{n-2}+\ldots+a_{n}$ can be written as $A(s)=P(s)+Q(s)$
- Now instead of solving the equation

Walter
 R.Evans

Root locus and Feedback

- The general case for the root locus is solved for cases of K varying from 0 to ∞ and this gives the root locus of the general equation.
- Very useful in fb system analysis as the general case is a characteristic equation
- Can be used in a system with one unknown parameter. For example $\frac{1}{s^{3}+4 s^{2}+K s+1}$
- Consider a system with unity feedback as shown in the block diagram

Feedback

$$
\begin{gather*}
G_{0}(s)=K \frac{Q(s)}{P(s)} \tag{1}\\
G(s)=\frac{K Q(s)}{(P(s)+K Q(s))} \tag{2}\\
P(s)+K Q(s) \tag{3}
\end{gather*}
$$

- The Closed loop has a characteristic polynomial very similar to the general case equation above.
- Example 1

Rules for plotting the root locus

- Equation $P(s)+K Q(s)$ can be written in magnitude and phase as

$$
\begin{gather*}
\arg Q(s)-\arg P(s)=\pi+2 k \pi, k=1,2, \ldots \tag{4}\\
K=\frac{|P(s)|}{|Q(s)|} \tag{5}
\end{gather*}
$$

- Thus all points that satisfy s will lie on the root locus. There are some rules/observations that can be used to simplify plotting the root locus

Rules

1. Symmetry: If $P(s)$ and $Q(s)$ have real coefficients
2. Number of Branches: Equal to the largest degree of $P(s)$ and Q(s)
3. Start and End points: Go from $\mathrm{K}=0$ to $\mathrm{K}=\infty$. Or in infinity depending upon the number of poles and zeros
4. Near the start and end points: To the right of every point on the root locus, there must be an odd number of poles and zeros.
5. Asymptotes: For large values of s , the asymptotes are straight lines and are symmetric. The angle of the asymptotes is given by

$$
\begin{equation*}
\phi_{A}=\frac{(2 q+1)}{n-m} * \pi \tag{6}
\end{equation*}
$$

where $\mathrm{q}=0,1,2, \ldots(\mathrm{n}-\mathrm{m}-1)$ The point of intersection is given by

$$
s_{1}=\frac{1}{n-m}\left(\sum_{i=1}^{n} p_{i}-\sum_{i=1}^{m} z_{i}\right)
$$

Rules

6 Multiple roots: Let s_{0} be a point on the root locus corresponding to gain K_{0}. By expanding the characteristic equation using Taylor series

$$
\begin{gather*}
P\left(s_{0}\right)+K_{0} Q\left(s_{0}\right)+\left(s-s_{0}\right)\left[P^{\prime}\left(s_{0}\right)+K_{0} Q^{\prime}\left(s_{0}\right)\right]+\frac{1}{2}\left(s-s_{0}\right)^{2}\left[P^{\prime \prime}\left(s_{0}\right)+K_{0} Q^{\prime \prime}\left(s_{0}\right)\right]+ \tag{8}\\
\cdots+\left(K-K_{0}\right) Q\left(s_{0}\right)+\left(K-K_{0}\right)\left(s-s_{0}\right) Q^{\prime}\left(s_{0}\right)+\ldots=0 \tag{9}
\end{gather*}
$$

So for a double root, the third term of the equation disappears. Thus in the near vicinity of s_{0} we get the following equation

$$
\begin{gather*}
\left(s-s_{0}\right)^{2}+2\left(K-K_{0}\right) Q\left(s_{0}\right)\left[P^{\prime \prime}\left(s_{0}\right)+K_{0} Q^{\prime \prime}\left(s_{0}\right)\right]^{-1}=0 \tag{10}\\
\arg \left(s-s_{0}\right)=\frac{1}{2} \arg \left(K-K_{0}\right)+\alpha / 2+k \pi \tag{11}
\end{gather*}
$$

where

$$
\alpha=\arg Q\left(s_{0}\right)-\arg \left[P^{\prime \prime}\left(s_{0}\right)+K_{0} Q^{\prime \prime}\left(s_{0}\right)\right]
$$

or

$$
\arg \left(s-s_{0}\right)=\left\{\begin{array}{ll}
\alpha / 2+k \pi & K<K_{0} \\
(\alpha+\pi) / 2+k \pi & K>K_{0}
\end{array} k=1,2 . .\right.
$$

