
Deep-Learning Study Circle:

Reinforcement Learning

Gabriel Ingesson

0/46

Reinforcement Learning

The problem where an agent has to learn a policy (behavior) by
taking actions in an environment, with the goal that the policy
should maximize a cumulative reward.

Different from supervised and unsupervised learning:
No labeled training data.
Reward signal instead of trying to find hidden structure.

Reinforcement learning can be used in combination with deep
neural networks that can be used to approximate policy and
cumulative reward functions.

1/46

Reinforcement Learning

2/46

Initially, the agent does not have to know anything about the environment.

The agent recieves a reward signal and the environment state.

Adjusts its actions in order to maximize the cumulative reward.

Examples

Pancake Robot

Atari Game

3/46

https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Overview

Based on:
Sutton, Richard S., and Andrew G. Barto. Reinforcement learning:
An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

David Silver’s course

Mathematical foundation:
Markov decision processes
Dynamic programming and the Bellman equation

Different learning algorithms:
Monte Carlo learning
Temporal difference learning

SARSA
Q-Learning

Relation to deep learning:
Deep ANN’s for function approximation, Deep Q Network (DQN)
Policy gradients

Homework - OpenAI Gym

4/46

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Definitions

At each step t the agent:

Receives observation of the environment state, St.

Recieves scalar reward, Rt.

Executes action, At.

and the environment:

Recieves action, At.

Updates state, St+1.

Emits scalar reward, Rt+1.

5/46

Reward

A reward Rt is a scalar feedback signal.

Indicates how well agent is doing at step t.

All goals can be described by the maximization of expected
cumulative reward.

The return Gt is the total discounted reward from time-step t:

Gt =Rt+1 +γRt+2 + · · ·=
∞∑
k=0

γkRt+k+1,

where γ ∈ [0,1) is a discount factor, favors immediate rewards.

6/46

Policy

A policy π is the agent’s behaviour, a map from state to action.

Deterministic: a= π(s).

Stochastic: π(a|s) = P[At = a|St = s].

The policy should be adjusted in order to maximize the return, Gt.

7/46

State-Value Function, vπ(s)

Evaluates a state, given a policy π.

The state-value function vπ(s), is a prediction of the return Gt given a
policy and the current state St:

vπ(s) = Eπ[Gt|St = s]

is used to evaluate a state and helps to select actions.

8/46

Action-Value Function, qπ(s,a)

Evaluate an alternative action, given a policy π.

The action-value function qπ(s,a) is the expected return starting from
state s, taking a, and then following policy π

qπ(s,a) = Eπ[Gt|St = s,At = a].

is used to evaluate actions and helps to update the policy.

9/46

The Markov Property

We assume that the environment state St fulfills the Markov property:

P[St+1,Rt+1|At,St,At−1,St−1, · · · ,A0,S0] = P[St+1,Rt+1|At,St]

The current state contains information of all past states and actions.

The Markov property is important in reinforcement learning because
decisions and value functions are assumed to be a function only of the
current state.

10/46

Markov Decision Process

A Markov decision process (MDP) is a Markov process with decisions
and rewards, a framework for modeling decision making:

A finite Markov Decision Process is a tuple < S,A,P,R,γ > where

S is a finite set of states.

A is a finite set of actions.

P is a transition probability matrix: Pa
s,s
′ = P[St+1 = s′|St = s,At = a]

R is a reward function: Ras = E[Rt+1|St = s,At = a]

γ is a discount factor γ ∈ [0,1).

The core problem of MDPs is to find a policy for the agent, that maximizes
return given the MDP. ”MDPs are 90% of modern reinforcement learning.”

11/46

Dynamic Programming

Is an optimization method for solving a problem by breaking it down into
simpler subproblems, solving each of those subproblems just once, and
storing their solutions. Can be applied to Markov decision processes.

Principle of Optimality: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision. (See Bellman, 1957, Chap. III.3.)

12/46

The Bellman Equation

The value functions can be decomposed into immediate reward plus
discounted value of successor state

A recursive relationship ((′) denotes subsequent state/action):

vπ(s) = E[Rt+1 +γvπ(s′)|St = s]

=
∑
a∈A

π(a|s)

Ras +γ
∑
s
′∈S

Pa
ss
′vπ(s′))


qπ(s) = E[Rt+1 +γqπ(St+1,At+1)|St = s,At = a]

=Ras +γ
∑
s
′∈S

Pa
ss
′

∑
a
′∈A

π(a′|s′)qπ(s′,a′)

vπ and qπ are unique solutions to these equations, they can be used to

compute, approximate and learn vπ and qπ .

13/46

Optimal state-value function

The optimal value functions is the maximum value function over all
policies:

v∗(s) = maxπ vπ(s)

q∗(s,a) = maxπ qπ(s,a)

Theorem
For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal to all
other policies π∗ ≥ π, ∀π.

All optimal policies achieve the optimal value function,
vπ∗ = v∗(s).

All optimal policies achieve the optimal action-value function,
qπ∗(s,a) = q∗(s,a).

14/46

Bellman Optimality Equation

The optimal value functions are recursively related by the Bellman
optimality equations:

v∗(s) = max
a
q∗(s,a) = max

a
Ras +γ

∑
s
′∈S

Pa
ss
′v∗(s′)

q∗(s) =
∑
s
′∈S

Pa
ss
′[r+γmax

a
q∗(s′)]

The Bellman optimality equations is non-linear system of equations.
Extreme computational cost.
In reinforcement learning one typically has to settle for approximate
solutions.

Value Iteration
Policy Iteration
Q-learning
Sarsa

15/46

Iterative Policy Evaluation & Improvement

Policy evaluation, iterative application of the Bellman equation:

v1→ v2→ v3 · · · → vπ

vk+1 =Ras +γ
∑
s
′∈S

Pa
ss
′vk(s′)

Policy improvement:

π′= greedy(v′) = argmaxa∈Aqπ(s,a).

Policy iteration:

π0→ vπ0 → π1→ vπ1 → ·· · → π∗→ vπ∗

If improvements stop, then the Bellman optimality equation has been
satisfied.

16/46

Iterative Policy Evaluation & Improvement

17/46

Source: Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Iterative Policy Evaluation & Improvement

1. Initialize V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S .

2. Policy Evaluation:
Repeat

∆← 0
For each s ∈ S

v← V (s)
V (s)←

∑
s
′
,r
p(s′, r|s,π(s))[r+γV (s′)]

∆←max(∆, |v−V (s)|)
until ∆≤ ε

3. Policy Improvement:
policy-stable← true
For each s ∈ S :

old action← argmaxa
∑
s
′
,r
p(s′, r|s,a)[r+γV (s′)]

If old action 6= π(s), then policy-stable← false
If policy-stable, then stop and return V ≈ v∗ and π ≈ π∗ else go to 2

18/46

General Policy Iteration

We need complete knowledge of the environment.

Policy iteration also suffers from Bellman’s curse of
dimensionality for large problems.

However, the general idea of letting policy evaluation and policy
improvement processes interact, is used in almost all
reinforcement-learning methods.

19/46

Monte-Carlo Reinforcement Learning

Model free, no prior knowledge about the environment.

Monte Carlo methods require only experience, i.e. sample
sequences of states, actions, and rewards from interaction with
the environment.

Learns from complete episodes, updates policy from computed
return, Gt.

20/46

Monte-Carlo Policy Evaluation

Initialize:

π← policy to be evaluted
V ← an arbitrary state-value function
Returns(s)← and empty list, ∀s ∈ S

Repeat:

Generate an episode using π
For each state s appearing in the episode:

G← following the first occurance of s
Append G to Returns(s)
V (s)← average(Returns(s))

By the law of large numbers:

V (s)→ vπ(s) as the numbers of visits at s→∞
error σ falls as 1/

√
n

21/46

Monte-Carlo Reinforcement Learning

Initialize, for all s ∈ S,a ∈ A:

Q(s,a)← arbitrarily
π(s)← arbitrarily
Returns(s,a)← an empty list

Repeat:

Choose S0 ∈ S and A0 ∈ A(S0) randomly
For each state s,a appearing in the episode:

G← return following the first occurance of s,a
Append G to Returns(s,a)
Q(s,a)← average(Returns(s,a))

for each s in the episode:

π(a|s) =
{

1− ε+ ε/|A| if a= argmaxaQ(s,a)
ε/|A| otherwise

22/46

Exploitation vs. Exploration

ε - Greedy Exploration

π(a|s) =
{

1− ε+ ε/|A| if a= argmaxa∈AQ(s,a)
ε/|A| otherwise

23/46

Monte-Carlo Reinforcement Learning

MC methods do not use any local information, i.e. bootstrapping
like in policy iteration.

They do not update their value estimates on the basis of other
value estimates.

Only updates v(s) and q(s,a) after completed episodes.

24/46

Temporal-Difference (TD) Learning

TD learning is a combination of Monte Carlo ideas and dynamic
programming (DP) ideas.

Like Monte Carlo methods, TD methods can learn directly from
raw experience without a model.

Like DP, TD methods update estimates based in part on other
learned estimates, i.e. use bootstrapping.

Bellman equation:

vπ(s) = E[Rt+1 +γvπ(s′)|St = s,At = a]

Estimate update, α ∈ [0,1]:

V (St)← V (St) +α(Rt+1 +γV (St+1)−V (St)))

25/46

TD Policy Evaluation

Initialize:

π← policy to be evaluted
V ← an arbitrary state-value function

Repeat (for each episode):

Initialize S
Repeat (for each step of episode) S

A← action given by π for S
Take action A, observe R′, S′

V (S)← V (S) +α(R′+γV (S′)−V (S)))
S← S′

until S is terminal

26/46

n-Step TD

Feedback from the n-step return:

Gnt =Rt+1 +γRt+2 + · · ·+γn−1Rt+n+γnV (St+n)

V (St)← V (St) +α(Gnt −V (St))

Intermediate algorithm w.r.t TD(0) and MC.

27/46

TD(λ)

The λ return Gλt combines all n-step returns Gnt

Gλt = (1−λ)
∞∑
n=1

λn−1Gnt

V (St)← V (St) +α(Gλt −V (St))

28/46

Sarsa: TD control algorithm

State-Action-Reward-State-Action (SARSA)

Q(S,A) depends on (S,A,R′,S′,A′)

Policy evaluation, Q≈ qπ:

Q(S,A)←Q(S,A) +α(R′+γQ(S′,A′)−Q(S,A))

Policy improvement is then chosen ε- greedy w.r.t. Q(S,A).

29/46

Sarsa: TD control algorithm

Initialize Q(s,a), ∀s ∈ S , a ∈ A, and Q(terminal-state, ·) = 0
Repeat (for each episode)

Initialize S
Choose A from S using policy derived from Q (e.g. ε - greedy)
Repeat (for each step of episode):

Take action A, observe R′, S′.
Choose A′ from S′ using policy derived from Q (e.g. ε - greedy)
Q(S,A)←Q(S,A) +α[R′+γQ(S′,A′)−Q(S,A)]
S← S′, A←A′

until S is terminal

30/46

Q-Learning

Initialize Q(s,a), ∀s ∈ S , a ∈ A, and Q(terminal-state, ·) = 0
Repeat (for each episode)

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g. ε - greedy)
Take action A, observe R′, S′.
Q(S,A)←Q(S,A) +α[R′+γmaxaQ(S′,a)−Q(S,A)]
S← S′.

until S is terminal

31/46

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

Backgammon 1020 states

Computer Go: 10170 states

Helicopter: continuous state space

So far we have represented the value functions as lookup table, this
becomes slow and memory expensive for large problems.

A solution is to estimate the value function with function approximation:

v̂(s,θ)≈ vπ(s)
q̂(s,a,θ)≈ qπ(s,a)

And update the parameter θ using MC or TD learning.

32/46

Function Approximators

Examples of approximators:

Linear, v̂(s,θ) =
∑
i θiφ(s)

Nonlinear, neural networks

33/46

Value-function approximation

Goal: find a parameter θ that minimizes the mean-squared error
between approximate value function v̂(S,θ) and the true value
function vπ(s).

J(θ) = 1
2Eπ[(vπ(S)− v̂(S,θ))2]

Gradient descent:

∆θ =−α∇θJ(θ) = αE[(vπ(S)− v̂(S,θ))∇θv̂(S,θ)]

Stochastic gradient descent samples:

∆θ = α(vπ(S)− v̂(S,θ))∇θv̂(S,θ)

where

vπ(S) =


Gt in MC

Rt+1 +γv̂(St+1,θ) in TD(0)

Gλt in TD(λ)

34/46

Action-Value Function Approximation

Goal: find a parameter θ that minimizes the mean-squared error
between approximate value function q̂(S,A,θ) and the true
action-value function qθ(S,A).

J(θ) = Eπ[(qπ(S)− q̂(S,A,θ))2]
Gradient descent:

∆θ =−1
2α∇θJ(θ) = αE[(qπ(S,A)− q̂(S,A,θ))∇θ q̂(S,A,θ)]

Stochastic Gradient Descent samples:

∆θ = α(qπ(S,A)− q̂(S,A,θ))∇θ q̂(S,A,θ)
where

qπ(S,A) =


Gt in MC

Rt+1 +γq̂(St+1,At+1,θ) in TD(0)

Gλt in TD(λ)

35/46

Episodic Semi-gradient Sarsa for Control

Input: a differentiable function q̂ : S ×A×Rn→ R
Initialize value-function weights θ ∈ Rn

Repeat (for each episode)
S,A← initial state and action of episode (e.g., ε-greedy)
Repeat (for each step of episode):

Take action A, observe R, S′.
Choose A′ as a function of q̂(S′, ·,θ) (e.g. ε-greedy)
θ← θ+α[R+γq̂(S′,A′,θ)− q̂(S,A,θ)]∇q̂(S,A,θ)
S← S′

A←A′

36/46

Continuing Tasks

Quality of a policy is instead defined as the average rate of reward:

η(π) = lim
t→∞

E[Rt|A0:t−1 ∼ π]

and returns are defined in terms of differences between rewards and
average reward:

Gt =Rt+1−η(π) +Rt+2−η(π) +Rt+3−η(π) + · · ·

37/46

Differential Semi-gradient Sarsa for Control

Input: a differentiable function q̂ : S ×A×Rn→ R
Initialize value-function weights θ ∈ Rn

Initialize average reward R̄ arbitrarily.
Repeat (for each episode)

S,A← initial state and action of episode (e.g., ε-greedy)
Repeat (for each step of episode):

Take action A, observe R, S′.
Choose A′ as a function of q̂(S′, ·,θ) (e.g. ε-greedy)
θ← θ+α[R− R̄+ q̂(S′,A′,θ)− q̂(S,A,θ)]∇q̂(S,A,θ)
R̄← R̄+β[R− R̄+ q̂(S′,A′,θ)− q̂(S,A,θ)]
S← S′

A←A′

38/46

TD-Gammon

Used a multi-layer artificial neural network trained by TD(λ) to
evaluate each possible move.

Achieved a level of play just slightly below that of the top human
backgammon player in 1992.

Found new strategies.

39/46

Google Deepmind’s Deep Q-Network (DQN)

40/46

Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learning.” (2013)

David Silver’s presentation on function approximation

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/FA.pdf

Policy-Gradient Methods

Previously we approximated

Qθ(s,a)≈Qπ(s,a)

and then generated a policy from the approximated action-value
function.

In some cases its better to directly parametrize the policy

πθ(a|s,θ) = P(a|s,θ)

which is more effective in high-dimensional or continuous action
spaces. We then update θ using gradient descent:

θt+1 = θt+α∇θJ(θt)

where J is a policy objective function.
41/46

Policy Evaluation

State-value function from initial state, s1:

J1(θ) = V πθ (s1)

Average value
JavV(θ) =

∑
s

dπθ (s)V πθ (s)

where dπθ (s) is the stationary Markov-chain distribution for πθ.

Average reward per time-step

JavR(θ) =
∑
s

dπθ (s)
∑
a

πθ(s,a)Ras

For any of the above (policy-gradient theorem):

∇θJ(θ) = Eπθ
[∇θ logπθ(S,A)Qπθ (S,A)]

42/46

Reinforce Monte Carlo

Initialize θ
for each episode do S1,A1,R2, ...,ST−1,AT−1,RT ∼ πθ do

for t= 1 to T −1
θ = θ+α∇θ logπθ(S,A)G
where G is the sample return from state St

end for
end for
return θ
end function

43/46

Q - Action Critic

With linear value function approximation Qw(S,A) = φ(S,A)Tw

Initialize s,θ
Sample a∼ πθ
for each step do

sample reward R′, sample transition S′

sample action A′∼ πθ(A′|S′)
δ =R′+γQw(S′,A′)−Qw(S,A)
θ = θ+α∇θ logπθ(A′|S′)Qw(S,A)
w← βδφ(S,A)

A←A′, S← S′

end for

44/46

Exercise: OpenAI Gym

OpenAI Gym:

A toolkit for developing and comparing reinforcement-learning
algorithms.

From simulated robots to Atari games.

A site for comparing and reproducing results.

Task:

Run a RL algorithm on one of the OpenAI-gym examples.
I suggest that you try an already working implementation:

Pong
Breakout
Space Invaders

45/46

https://gym.openai.com/
http://karpathy.github.io/2016/05/31/rl/
https://github.com/coreylynch/async-rl
https://gym.openai.com/evaluations/eval_HTjvyhm5QlqLWP4pB1fG4A

