

Practical overview of optimization of Deep Networks

Carl Åkerlindh

Gradient descent optimization

Backpropagation Batch gradient descent Online gradient descent Mini-batch gradient descent Challenges

Gradient descent additions

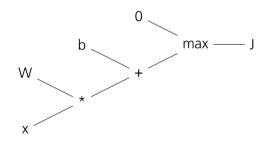
Momentum Nestrov accelerated gradient Adagrad Other SGD variants Additional tricks

Homework

References

Backpropagation

Write your expression as an expression tree. Compute your objective during a forward pass. Use chain rule to compute gradient during a backward pass. For $J = \max(Wx + b)$ we get



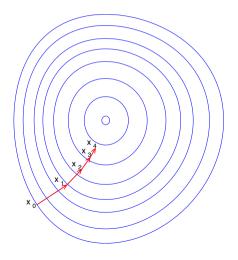
Useful resource: http://www.psi.toronto.edu/~andrew/papers/ matrix_calculus_for_learning.pdf

Gradient descent

Vanilla gradient descent, also known as batch gradient descent.

 $\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k)$

Updates the parameters with gradient based on the entire data set.



Gradient descent

```
# gradient descent
for i in 1:num_epochs
  grad = eval_grad(loss, data, params)
  params = params - learning_rate * grad
end
```

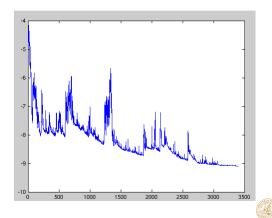
- Can be very slow
- Intractable if dataset does not fit in memory
- Not possible to perform online

Stochastic gradient descent

Online version of gradient descent.

$$\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k; x_j, y_j)$$

Updates the parameters with approximated gradient based on single data point.



Stochastic gradient descent

```
# stochastic gradient descent
for i in 1:num_epochs
   shuffle!(data)
   for j in 1:lenght(data)
     grad = eval_grad(loss, data[j], params)
     params = params - learning_rate * grad
end
end
```

end

- Usually faster convergence
- High variance

Mini-batch gradient descent

Best of both worlds.

$$\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k; \mathbf{x}_{j:j+n}, \mathbf{y}_{j:j+n})$$

Updates the parameters with approximated gradient based on single data point.

Mini-batch gradient descent

```
# mini-batch gradient descent
for i in 1:num_epochs
   shuffle!(data)
   for j in 1:num_batches
      batch = get_batch(data, j, batch_size)
      grad = eval_grad(loss, batch, params)
      params = params - learning_rate * grad
   end
end
```

- Faster than batch gradient descent
- Reduced variance compared to (online) gradient descent

Guaranteed convergence \neq fast convergence

- Choosing learning rate is very important, but non-trivial
- Pre-defined learning rate schemes can be used, but might not fit all data sets
- Make bigger updates for rarely occurring features, and smaller updates for more common ones
- Local minima and saddle points

Momentum

Prevents oscillations by accumulating the momentum of the gradient updates in the dimensions that does not change direction and vice versa.

$$v_{k+1} = \gamma v_k + \eta \nabla J(\theta_k)$$

$$\theta_{k+1} = \theta_k - v_{k+1}$$

Nestrov accelerated gradient

Similar to the momentum method, but evaluates the gradient in an approximation of the next parameter vector.

$$v_{k+1} = \gamma v_k + \eta \nabla J(\theta_k - \gamma v_k)$$

$$\theta_{k+1} = \theta_k - v_{k+1}$$

Adagrad

Adapts the update of individual parameters based on their importance. Let $g_{k+1,i} = \nabla J(\theta_i)$, the Adagrad update per parameter is then

$$\theta_{k+1} = \theta_k - \frac{\eta}{\sqrt{G_{k,ii} - \epsilon}} \nabla J(\theta_k)$$

where G_k is a diagonal matrix where each diagonal element $G_{k,ii}$ is the sum of squares of all previous gradients with respect to θ_i . Pros and cons

- Eliminates need to tune learning rate manually
- Every term added to G is positive, so eventually the learning rate will become too small

Other variants of SGD

- Adadelta
- RMSprop
- Adam

Additional tricks

Curriculum learning Shuffling the dataset in the beginning of every optimization epoch.

Batch normalization Every mini-batch is normalized individually during training. A post-training step is then applied, where mean and variance is computed for the whole dataset.

Early stopping Free lunch according to Hinton. During training, compute error on a validation dataset, if it increases, stop.

Additional tricks

- Layer normalization
- Randomly select hyperparameters
- Dropout
- Gradient noise

Homework

Implement a training algorithm from scratch for any model introduced in this course, e.g. Autoencoder, Restricted Boltzmann Machine or Convolutional Neural Network.

Further reading I

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. "Layer Normalization". In: arXiv.org (July 2016). arXiv: 1607.06450v1 [stat.ML].

Yoshua Bengio. "Practical Recommendations for Gradient-Based Training of Deep Architectures". In: *Neural Networks: Tricks of the Trade*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 437–478.

Geoffrey E Hinton. "A Practical Guide to Training Restricted Boltzmann Machines". In: *Neural Networks: Tricks of the Trade*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–619.

Sergey loffe and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". In: *arXiv.org* (Feb. 2015). arXiv: 1502.03167v3 [cs.LG].

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. "Practical Bayesian Optimization of Machine Learning Algorithms". In: *Advances in neural information* ... (2012), pp. 2951–2959.

Further reading II

Nitish Srivastava et al. "Dropout: a simple way to prevent neural networks from overfitting". In: *Journal of Machine Learning Research (JMLR)* 15 (2014), pp. 1929–1958.

I Sutskever et al. "On the importance of initialization and momentum in deep learning." In: *ICML (3)* (2013).

Tijmen Tieleman. "Training restricted Boltzmann machines using approximations to the likelihood gradient". In: *the 25th international conference*. New York, New York, USA: ACM Press, 2008, pp. 1064–1071.

