
Department of
AUTOMATIC CONTROL

Exam FRTF01 - Physiological Models and Computation
January 14 2019, 14-19

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem. Preliminary grades:

Grade 3: 12–16.5 points
4: 17 –21.5 points
5: 22 –25 points

Accepted aid
Lecture slides, any books (without relevant exercises with solutions), standard
mathematical tables and “Formelsamling i reglerteknik”. Calculator.

Results
The result of the exam will be posted in LADOK no later than February 11.
Information on when the corrected exam papers will be shown, will be given on
the course homepage.
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Exam FRTF01, 2019–01–14

1. In Fig. 1 the reaction speed as a function of the substrate concentration is
plotted for two different enzymatic reactions.

a. Which of the two plots follows a Michaelis-Menten relation? (1 p)

b. Estimate Vmax and Km from the reaction following a Michaelis-Menten rela-
tion. (1 p)
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Figure 1: Reaction rate for an enzymatic reaction in Problem 1.

Solution

a. Plot A is following a Michaelis-Menten relationship. It follows a typical
Michaelis-Menten relation while Plot B has a decrease in the reaction rate at
the substrate increases.

b. Recall that for a Michaelis-Menten reaction the speed is given by

dP
dt

=
vmaxS
K + S

From the graph we can see that vmax ( 10. Further, for S = K we should
have that dP/dt = vmax/2. This gives that K = 1

2.

a. Which of the two equations below can not be a valid linearization of a system
ẋ = f (x, u), where x and u are scalars? (1 p)

∆ ẋ = 1+ ∆x+ ∆u (1)

∆ ẋ = 4∆x (2)

b. Find all the stationary points (x0, u0) for ẋ = x2 − x + u3 + u and u0 = 0.
Linearize the system around the stationary point that gives a stable linear
system. (2 p)
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Figure 2: Serial Hill Model for problem 3.

Solution

a. The expression in (1) is not linear due to the constant term. And can thus not
be a correct linearization.

b. We have ẋ = f (x) = x(x− 1) + u3 + u. Which for u = 0 is zero for x0 = 0 and
x0 = 1. This gives stationary points (0, 0) and (1, 0).
For the linear system to be stable we need f ′x(x0, u0) = 2x − 1 ≤ 0 which
means that we should linearize around (0,0). Take ∆x = x and ∆u = u Then

∆ ẋ = f ′x(0, 0)∆x+ f ′u(0, 0)∆u = −∆x+ ∆u

3.

a. Can the main behavior of the Hodgkin-Huxley Model be approximated by a
linear model? That is, there being a threshold potential for a spike to occur.

(0.5 p)

b. What would it imply physiologically to assume that KS = ∞ in the serial Hill
model seen in Fig 2. (0.5 p)

c. Describe how you would choose your regressor matrix Φ if you want to do a
least-squares estimation of y = ax2 − b, where you have measurements of x
and y. (1 p)

Solution

a. No, a linear system can not replicate that the output can change other than
a scaling by scaling the input.

b. That the tendon does not expand when a force is applied to it.

c. You would form the rows of Φ on the form

Φi = [x2
i ,−1]

(or Φi = [−1, x2
i ]).
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4. In this problem we consider the system Y (s) = G(s)U(s) with transfer func-
tion

G(s) = 1
s2 + 3s+ 2

a. Determine the poles of the system and find a differential equation describing
the relationship between y(t) and u(t). (1 p)

b. Find a state-space representation for G(s). (1 p)

c. Find the impulse response of the system. (1 p)

d. Consider output feedback on the form u = K(r− y). Draw a block diagram of
the closed-loop system and determine for which K the closed loop system is
stable. (2 p)

e. Describe the difference between output feedback and state feedback. (0.5 p)

Solution

a. We can factorize the denominator as (s + 2)(s + 1) which shows that the
system has poles in s = −1 and s = −2.
We have that

(s2 + 3s+ 2)Y (s) = U(s)

Taking the inverse Laplace transform gives

ÿ+ 3ẏ+ 2y = u

b. Let x1 = y and x2 = ẏ. Then a state-space representation is given by
[ ẋ1

ẋ2

]
=

[ 0 1
−2 −3

] [ x1

x2

]
+

[ 0
1

]
u

y = [ 1 0 ]

c. We can rewrite the transfer function as

1
(s+ 1)(s+ 2)

=
1

s+ 1
−

1
s+ 2

Using that Laplace transform of δ (s) = 1 an the collection of formulae gives
that the impulse response to be

h(t) = e−t − e−2t.

d. A block diagram can be seen bellow. The closed-loop transfer function is

GK
1+ GK

=
K

s2 + 3s+ 2+ K

With characteristic polynomial s2 + 3s+ 2+ K . This is stable when all coeffi-
cients are positive (see Collection of formulae). Thus we have that the closed
loop is stable for K > −2.
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e. For output feedback only the output of the system is used to calculate the
input u. For state feedback, all the states of the system are used.

5.

a. Consider a drug with linear pharmacokinetics and a half life of 4 days.
Find a differential equation describing the concentration given an initial
concentration C(0) = C0. (1 p)

b. Now assume that that we can continuously infuse the patient with the drug.
Then the drug concentration is governed by

Ċ = −kp1cC +
u(t)
V

Where V is the volume. The drugs path through the body is depicted in Fig.
3. Describe the system on state space form. Assume that all volumes are 1
and all reactions follows linear reaction speeds.
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kp1c

kp2,p1

kp1,p2

yu

ke

Figure 3: Compartment model for Problem 5.

(1.5 p)

c. Find the transfer function of the system.
Hint: You may find the following useful


 a 0 0
b c d
0 e f



−1

=
1

acf − eda


 cf − ed 0 0

−bf f a −da
be −ea ca


 .

(1.5 p)

d. Let

u =

{
1 t ≥ 0
0 t < 0.

Find [P2] as t→∞

(1 p)
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Solution

a. A drug with linear pharmacokinetics follows Ċ(t) = −kC(t), with solution
C(t) = C0e−kt. We know that C(4) = C0/2. This gives that

e−4k =
1
2
[ −4k = log 1

2
[ k = 1

4
log 2

b. Let x1 = [C], x2 = [P1] and x3 = [P2]. Then the system is described by

ẋ =


−kp1c 0 0

kp1c −kp2,p1 kp1,p2

0 kp2,p1 −kp1,p2 − ke


 x+


 1

0
0


u

y = [ 0 0 1 ] x

c. The transfer function is given by C(sI − A)−1B. Using the hint we find that

G(s) = C(sI − A)−1B = C


 s+ kp1c 0 0
−kp1c s+ kp2,p1 −kp1,p2

0 −kp2,p1 s+ kp1,p2 + ke



−1

B

=
kp1,ckp2,p1

(s+ kp1,c)(s+ kp2,p1)(s+ kp1,p2 + ke) − kp2,p1kp1,p2(s+ kp1c)

d. The answer is given by the static gain of the system,

G(0) = kp1,ckp2,p1

(kp1,c)(kp2,p1)(kp1,p2 + ke) − kp2,p1kp1,p2(kp1c)
=

1
ke

6. Cerebral blood flow can be modeled by the following compartment model

Ċb(t) = k1Ca(t) − k2Cb(t)
Cv(t) = λCb(t) + (1− λ)Ca(t),

where:

Ca is the blood concentration in arterial plasma.
Cb is the blood concentration in brain plasma.
Cv is the blood concentration in venous plasma.
λ is the relative perfusion index.

a. You want to use a tracer to estimate the parameters of the model. What are
desirable characteristics of the tracer? (0.5 p)

b. Find a, b and d such that

Cv(s)
Ca(s)

=
b

s+ a
+ d.

Now assume that a, b and d is know. Find expressions for k1, k2 and λ. (2 p)
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Figure 4: Tracer experiment in Problem 6.

c. A tracer infusion experiment has been conducted. All tracer concentrations
are equal to zero before the start of the experiment. The tracer concentration
in arterial plasma follows a step change at time zero. The resulting tracer
concentration in venous plasma can be seen in Fig. 4 (last page). Estimate a,
b and d. (2 p)

Solution

a. The tracer should have the same metabolic behavior as the blood and give no
perturbations to the behavior It must also be distinguishable from the blood.
(While not needed for estimation, the tracer should also not have any side
effects.) (0.5 p)

b. We have that
Cb(s) =

k1
s+ k2

ca

Dividing the second equation by Ca gives

Cv(s)
Ca(s)

= λCb(s)
Ca(s)

+ (1− λ) = λk1
s+ k2

+ (1− λ).

Where we find that b = λk1, a = k2 and d = (1− λ).
This gives that k2 = a, λ = 1− d and k1 = b/λ = b/(1− d).

c. We aim to find Cv(t) via the inverse Laplace transform. We have that

Cv(s) =
(

b
s+ a

+ d
)

1
s
.
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Figure 5: Nyquist plot for G(s) in problem 7.

Which gives
Cv(t) =

b
a
(1− e−at) + d.

We see that Cv(0) = 0.5 which gives d = 0.5. Furthermore, at time t = 1 we
have that e−at ( 0.5. which gives a = log(2). Finally, the final value is equal
to b/a+ d which gives b = (3.38− 0.5) · log(2) ( 2.

7. In this problem we consider a system G(s) with Nyquist diagram in Fig 5.
(last page).

a. A friend says that the closed-loop of G(s) has a phase margin of 90○. Is this
true or false? Motivation required. (1.5 p)

b. Consider again closing the loop using u = K(r− y), for K ≥ 0. Another friend
says that the closed-loop is only stable for K < 1/0.8. Is this true or false?
Motivation required. (1.5 p)

Solution

a. False. The phase margin is actually infinite as all points has radius less than
1.

b. False, the points −1 is only encircled when K > 1/0.3.

Good Luck!
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