Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Automatic Control, Basic Course, Lecture 3

November 8, 2018

Lund University, Department of Automatic Control

1. Step Response Analysis

2. Frequency Response

3. Relation between Model Descriptions

Step Response Analysis

From the last lecture, we know that if the input u(t) is a **step**, then the output in the Laplace domain is

$$Y(s) = G(s)U(s) = G(s)\frac{1}{s}$$

It is possible to do an inverse transform of Y(s) to get y(t), but is it possible to claim things about y(t) by only studying Y(s)?

We will study **how the poles affects the step response**. (The zeros will be discussed later).

Let F(s) be the Laplace transformation of f(t), i.e., $F(s) = \mathcal{L}(f(t))(s)$. Given that the limits below exist¹, it holds that:

Initial value theorem $\lim_{t\to 0} f(t) = \lim_{s\to +\infty} sF(s)$

Final value theorem $\lim_{t\to+\infty} f(t) = \lim_{s\to 0} sF(s)$

For a step response we have that:

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)\frac{1}{s} = G(0)$$

¹Q: When can we NOT apply the Final value theorem?

Some useful matlab commands

- >> s=tf('s'); % enables to use s as transfer fcn
- >> z=0.2; w0=5;
- >> G= w0^2 / (s^2 + 2*z*w0*s + w0^2)
- >> step(G)
- >>
- >> pzmap(G) % pole-zero map

$$G(s) = \frac{\kappa}{1+sT}$$

One pole in s = -1/T

Step response:

$$Y(s) = G(s)\frac{1}{s} = \frac{K}{s(1+sT)} \quad \xrightarrow{\mathcal{L}^{-1}} \quad y(t) = K\left(1-e^{-t/T}\right), \, \mathbf{t} \ge \mathbf{0}$$

Final value:

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \cdot \frac{K}{s(1+sT)} = K$$

T is called the time-constant:

$$y(T) = K(1 - e^{-T/T}) = K(1 - e^{-1}) \approx 0.63K$$

i.e., ${\cal T}$ is the time it takes for the step response to reach 63% of its final value

$$\lim_{t \to 0} \dot{y}(t) = \lim_{s \to +\infty} s \cdot s Y(s) = \lim_{s \to +\infty} \frac{s^2 K}{s(1+sT)} = \frac{K}{T}$$

5

Second Order System With Real Poles

Poles in $s = -1/T_1$ and $s = -1/T_2$. Step response:

$$y(t) = \begin{cases} \mathcal{K}\left(1 - \frac{T_1 e^{-t/T_1} - T_2 e^{-t/T_2}}{T_1 - T_2}\right), \, \mathbf{t} \ge \mathbf{0} & T_1 \neq T_2 \\ \mathcal{K}\left(1 - e^{-t/T} - \frac{t}{T} e^{-t/T}\right), \, \mathbf{t} \ge \mathbf{0} & T_1 = T_2 = T \end{cases}$$

Second Order System With Real Poles

Final value:

$$\lim_{t \to +\infty} = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{sK}{s(1 + sT_1)(1 + sT_2)} = K$$

Second Order System With Real Poles

Derivative at zero:

$$\lim_{t \to 0} \dot{y}(t) = \lim_{s \to +\infty} s \cdot sY(s) = \lim_{s \to +\infty} \frac{s^2 K}{s(1+sT_1)(1+sT_2)} = 0$$

$$G(s) = rac{\kappa \omega_0^2}{s^2 + 2 \zeta \omega_0 s + \omega_0^2}, \hspace{1em} 0 < \zeta < 1$$

Relative damping $\zeta,$ related to the angle φ

 $\zeta = \cos(\varphi)$

$$G(s)=rac{\kappa\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}, \quad 0<\zeta<1$$

Inverse transformation for step response yields:

$$y(t) = K\left(1 - \frac{1}{\sqrt{1 - \zeta^2}}e^{-\zeta\omega_0 t}\sin\left(\omega_0\sqrt{1 - \zeta^2}t + \arccos\zeta\right)\right)$$
$$= K\left(1 - \frac{1}{\sqrt{1 - \zeta^2}}e^{-\zeta\omega_0 t}\sin\left(\omega_0\sqrt{1 - \zeta^2}t + \arcsin(\sqrt{1 - \zeta^2})\right)\right), \mathbf{t} \ge \mathbf{0}$$

7

$$G(s)=rac{{\cal K}\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}, \quad 0<\zeta<1$$

Inverse transformation for step response yields:

$$\begin{aligned} y(t) &= \mathcal{K}\left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_0 t} \sin\left(\omega_0 \sqrt{1 - \zeta^2} t + \arccos\zeta\right)\right) \\ &= \mathcal{K}\left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_0 t} \sin\left(\omega_0 \sqrt{1 - \zeta^2} t + \arcsin(\sqrt{1 - \zeta^2})\right)\right), \mathbf{t} \ge \mathbf{0} \end{aligned}$$

Exercise: Check of correct starting point of step response.

Step Response

t

$$\begin{split} \nu(0) &= \kappa \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^0 \sin \left(\omega_0 \sqrt{1 - \zeta^2} 0 + \arcsin(\sqrt{1 - \zeta^2}) \right) \right) & 1.5 \\ &= \kappa \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} \cdot \sqrt{1 - \zeta^2} \right) \\ &= 0 \\ &= 0 \end{split}$$

7

$$G(s) = rac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}, \quad 0 < \zeta < 1$$

Changing fq ω_0

$$G(s)=rac{{\cal K}\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}, \hspace{1em} 0<\zeta<1$$

Changing damping ζ

Frequency Response

Sinusoidal Input

Given a transfer function G(s), what happens if we let the input be $u(t) = \sin(\omega t)$?

8

It can be shown that if the input is $u(t) = \sin(\omega t)$, the output² will be

$$y(t) = A\sin(\omega t + \varphi)$$

where

$$A = |G(i\omega)|$$
$$\varphi = \arg G(i\omega)$$

So if we determine a and φ for different frequencies ω , we have a description of the transfer function.

²after the transient has decayed

Bode Plot

Idea: Plot $|G(i\omega)|$ and arg $G(i\omega)$ for different frequencies ω .

Sinusoidal Input-Output: example with frequency sweep (chirp)

Resonance frequency of industrial robot IRB2000 visible in data.

Sinusoidal Input-Output: example with frequency sweep (chirp)

Resonance frequency of industrial robot IRB2000 visible in data.

Let

$$G(s) = G_1(s)G_2(s)G_3(s)$$

then

$$\begin{split} \log |G(i\omega)| &= \log |G_1(i\omega)| + \log |G_2(i\omega)| + \log |G_3(i\omega)| \\ \arg G(i\omega) &= \arg G_1(i\omega) + \arg G_2(i\omega) + \arg G_3(i\omega) \end{split}$$

This means that we can construct Bode plots of transfer functions from simple "building blocks" for which we know the Bode plots.

lf

$$G(s) = K$$

then

$$egin{aligned} & \operatorname{og}|G(i\omega)| = \operatorname{log}(|\mathcal{K}|) \ & \operatorname{arg} G(i\omega) = 0 \ & (\textit{if } \mathcal{K} > 0, \textit{ else } + 180 \textit{ or } - 180 \deg) \end{aligned}$$

Bode Plot of G(s) = K

lf

$$G(s) = s^n$$

then

$$\log |G(i\omega)| = n \log(\omega)$$

 $\arg G(i\omega) = n \frac{\pi}{2}$

Bode Plot of $G(s) = s^n$

Bode Plot of $G(s) = (1 + sT)^n$

lf

$$G(s) = (1 + sT)^n$$

then

$$\log |G(i\omega)| = n \log(\sqrt{1 + \omega^2 T^2})$$

arg $G(i\omega) = n \arg(1 + i\omega T) = n \arctan(\omega T)$

For small ω

 $\log |G(i\omega)|
ightarrow 0$ arg $G(i\omega)
ightarrow 0$

For large ω

Bode Plot of $G(s) = (1 + sT)^n$

Bode Plot of $G(s) = (1 + 2\zeta s / \omega_0 + (s / \omega_0)^2)^n$

$$G(s) = (1 + 2\zeta s/\omega_0 + (s/\omega_0)^2)^n$$

For small ω

 $\log |G(i\omega)| o 0$ $\arg(i\omega) o 0$

For large ω

$$\log |G(i\omega)|
ightarrow 2n \log\left(rac{\omega}{\omega_0}
ight)$$

 $\arg G(i\omega)
ightarrow n\pi$

Bode Plot of $G(s) = (1 + 2\zeta s / \omega_0 + (s / \omega_0)^2)^n$

$$G(s) = e^{-sL}$$

Describes a pure time delay with delay L, i.e, y(t) = u(t - L)

$$\log |G(i\omega)| = 0$$

arg $G(i\omega) = -\omega L$

Bode Plot of $G(s) = e^{-sL}$

Same delay may appear as different phase lag for different frequencies! Example

Delay \approx 0.52 sec between input and output.

(Upper): Period time = $2\pi \approx$ 6.28 sec. Delay represents phase lag of $\frac{0.52}{6.28} \cdot 360 \approx 30 \text{ deg}$

(Lower): Period time = $\pi \approx$ 3.14 sec. Delay represents phase lag of $\frac{0.5}{3.14} \cdot 360 \approx 60$ deg.

Same delay may appear as different phase lag for different frequencies! Example

Delay \approx 0.52 sec between input and output.

(Upper): Period time = $2\pi \approx$ 6.28 sec. Delay represents phase lag of $\frac{0.52}{6.28} \cdot 360 \approx 30 \text{ deg}$

(Lower): Period time = $\pi \approx$ 3.14 sec. Delay represents phase lag of $\frac{0.5}{3.14} \cdot 360 \approx 60$ deg.

Bode Plot of $G(s) = e^{-sL}$

Check phase in Bode diagram for $e^{-0.52s}$ for

- $sin(t) \Rightarrow \omega = 1.0 rad/s$
- $\sin(2t) \Rightarrow \omega = 2.0 \text{ rad/s}$

>> s=tf('s')

>> G=exp(-0.52*s);

>> bode(G,0.1 ,5) % Bode plot in frequency-range [0.1 .. 5] rad/s

Example

Draw the Bode plot of the transfer function

$$G(s) = \frac{100(s+2)}{s(s+20)^2}$$

First step, write it as product of simple transfer functions:

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot (1+0.5s) \cdot (1+0.05s)^{-2}$$

Then determine the corner frequencies (break points):

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot \underbrace{(1+0.5s)}^{w_{c_1}=2} \cdot \underbrace{(1+0.05s)^{-2}}^{w_{c_2}=20}$$

Example

Draw the Bode plot of the transfer function

$$G(s) = \frac{100(s+2)}{s(s+20)^2}$$

First step, write it as product of simple transfer functions:

$$G(s) = rac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot (1+0.5s) \cdot (1+0.05s)^{-2}$$

Then determine the corner frequencies (break points):

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot \underbrace{(1+0.5s)}^{w_{c_1}=2} \cdot \underbrace{(1+0.05s)^{-2}}^{w_{c_2}=20}$$

Sort from LOW to HIGH frequencies:

Start with LOW frequencies

(make sure the other TFs asymptotically reduce to 1).

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot \underbrace{(1+0.5s)}^{w_{c_1}=2} \cdot \underbrace{(1+0.05s)^{-2}}^{w_{c_2}=20}$$

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot \underbrace{(1+0.5s)}^{w_{c_1}=2} \cdot \underbrace{(1+0.05s)^{-2}}^{w_{c_2}=20}$$

$$G(s) = \frac{100(s+2)}{s(s+20)^2} = 0.5 \cdot s^{-1} \cdot \underbrace{(1+0.5s)}^{w_{c_1}=2} \cdot \underbrace{(1+0.05s)^{-2}}_{(1+0.05s)^{-2}}$$

By removing the frequency information, we can plot the transfer function in one plot instead of two.

Nyquist Plot

By removing the frequency information, we can plot the transfer function in one plot instead of two.

Split the transfer function into real and imaginary part:

$$G(s)=rac{1}{1+s}$$
 $G(i\omega)=rac{1}{1+i\omega}=rac{1}{1+\omega^2}-irac{\omega}{1+\omega^2}$

Is this the transfer function in the plot above?

Relation between Model Descriptions

 $\frac{K}{sT+1}$

Multi-capacitive Processes

 $rac{\kappa}{(sT_1+1)(sT_2+1)}$

Oscillative Processes

 $rac{\kappa\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2},\,0<\zeta<1$

Delay Processes

Process with Inverse Responses

 $rac{-sa+1}{(sT_1+1)(sT_2+1)}$

Content

This lecture

- 1. Step Response Analysis
- 2. Frequency Response
- 3. Relation between Model Descriptions

Next lecture

- Classic Feedback Example The Steam Engine
- Stability
- Stationary Errors