AUTOMATIC CONTROL

Collection of Formulae

Department of Automatic Control Lund University June 2011

Matrix theory

Notations

Matrix of order m x n

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & & & \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Vector of dimension n

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Transpose

$$B = A^{T}$$
$$b_{ij} = a_{ji}$$
$$(AB)^{T} = B^{T}A^{T}$$

The matrix is symmetric if $a_{ij} = a_{ji}$.

Determinant

$$\det A = |A| = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \ \end{pmatrix}$$

If A is of order 2x2, then

$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

In general

$$\det A = \sum_{i=1}^n a_{ij} (-1)^{i+j} \det M_{ij}$$
 $= \sum_{j=1}^n a_{ij} (-1)^{i+j} \det M_{ij}$

where M_{ij} is the matrix one obtains if row i and column j are removed from the matrix A.

Inverse

$$A^{-1}A = AA^{-1} = I \qquad (\det A \neq 0)$$

If A is of order 2x2, then

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

1

In general,

$$A^{-1} = \frac{1}{\det A} C^T$$

where the elements in C are given by

$$c_{ij} = (-1)^{i+j} \det M_{ij}$$

Eigenvalues and eigenvectors

The eigenvalues $(\lambda_i, i = 1, 2, ..., n)$ and the eigenvectors $(x_i, i = 1, 2, ..., n)$ are given as the solutions to the equation system

$$Ax = \lambda x$$

which has a solution if

$$\det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

 $\lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n$ is called the characteristic polynomial. det $(\lambda I - A) = 0$ is called the characteristic equation.

Dynamical systems

State-space equations

$$\begin{aligned} \frac{dx}{dt} &= Ax + Bu\\ y &= Cx + Du\\ x(t) &= e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau \end{aligned}$$

Weighting function

$$y(t) = \int_0^t h(t - \tau)u(\tau)d\tau$$
$$h(t) = Ce^{At}B + D\delta(t)$$

Transfer function

$$\begin{split} Y(s) &= G(s)U(s)\\ G(s) &= C(sI-A)^{-1}B + D = \mathcal{L}\{h(t)\} \end{split}$$

The denominator of G is the characteristic polynomial to the matrix A.

Frequency response

$$u(t) = \sin \omega t$$

$$y(t) = a \sin(\omega t + \varphi)$$

$$a = |G(i\omega)|$$

$$\varphi = \arg G(i\omega)$$

Linearization

If the nonlinear system

$$\frac{dx}{dt} = f(x,u)$$
$$y = g(x,u)$$

is linearized around a stationary point (x_0, u_0) , a change of variables

$$\Delta x = x - x_0$$
$$\Delta u = u - u_0$$
$$\Delta y = y - y_0$$

then gives the linear system

$$\frac{d\Delta x}{dt} = \frac{\partial f}{\partial x}(x_0, u_0)\Delta x + \frac{\partial f}{\partial u}(x_0, u_0)\Delta u$$
$$\Delta y = \frac{\partial g}{\partial x}(x_0, u_0)\Delta x + \frac{\partial g}{\partial u}(x_0, u_0)\Delta u$$

State-space representations

1. Diagonal form

$$\frac{dz}{dt} = \begin{pmatrix} \lambda_1 & & 0 \\ & \lambda_2 & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} z + \begin{pmatrix} \beta_1 \\ & \beta_2 \\ \vdots \\ & & \beta_n \end{pmatrix} u$$
$$y = \begin{pmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_n \end{pmatrix} z + Du$$

2. Observable canonical form

$$\frac{dz}{dt} = \begin{pmatrix} -a_1 & 1 & 0 & \dots & 0\\ -a_2 & 0 & 1 & & 0\\ \vdots & & & & \\ -a_{n-1} & 0 & 0 & & 1\\ -a_n & 0 & 0 & & 0 \end{pmatrix} z + Du$$
$$y = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \end{pmatrix} z + Du$$

3. Controllable canonical form

$$\frac{dz}{dt} = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & 1 & 0 \end{pmatrix} z + \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} b_1 & b_2 & \dots & b_n \end{pmatrix} z + Du$$

The transfer function of the system is

$$G(s) = D + \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_n}$$
$$= D + \frac{\beta_1 \gamma_1}{s - \lambda_1} + \frac{\beta_2 \gamma_2}{s - \lambda_2} + \dots + \frac{\beta_n \gamma_n}{s - \lambda_n}$$

The Laplace transform

^	1 •
Operator	lexicon
- F	

	Laplace transform $F(s)$	Time function $f(t)$			
1	$lpha F_1(s) + eta F_2(s)$	$\alpha f_1(t) + \beta f_2(t)$	Linearity		
2	F(s+a)	$e^{-at}f(t)$	Damping		
3	$e^{-as}F(s)$	$\begin{cases} f(t-a) & t-a > 0\\ 0 & t-a < 0 \end{cases}$	Time delay		
4	$\frac{1}{a}F\left(rac{s}{a} ight) (a>0)$	f(at)	Scaling in <i>t</i> -domain		
5	F(as) $(a > 0)$	$\frac{1}{a}f\left(\frac{t}{a}\right)$	Scaling in <i>s</i> -domain		
6	$F_1(s)F_2(s)$	$\int_0^t f_1(t-\tau) f_2(\tau) d\tau$	Convolution in <i>t</i> -domain		
7	${1\over 2\pi i}\int_{c-i\infty}^{c+i\infty}F_1(\sigma)F_2(s-\sigma)d\sigma$	$f_1(t)f_2(t)$	Convolution in <i>s</i> -domain		
8	sF(s)-f(0)	f'(t)	Differentiation in <i>t</i> -domain		
9	$s^{2}F(s) - sf(0) - f'(0)$	f''(t)			
10	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$	$f^{(n)}(t)$			
11	$\frac{d^n F(s)}{ds^n}$	$(-t)^n f(t)$	Differentiation in s-domain		
12	$\frac{1}{s}F(s)$	$\int_0^t f(\tau)d\tau$	Integration in <i>t</i> -domain		
13	$\int_s^\infty F(\sigma)d\sigma$	$\frac{f(t)}{t}$	Integration in s-domain		
14	$\lim_{s\to 0} sF(s)$	$\lim_{t\to\infty}f(t)$	Final value theorem		
15	$\lim_{s\to\infty} sF(s)$	$\lim_{t\to 0} f(t)$	Initial value theorem		

Transform lexicon

	Laplace transform $F(s)$	Time function $f(t)$	
1	1	$\delta(t)$	Dirac function
2	$\frac{1}{s}$	1	Step function
3	$\frac{1}{s^2}$	t	Ramp function
4	$\frac{1}{s^3}$	$\frac{1}{2}t^2$	Acceleration
5	$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	
6	$\frac{1}{s+a}$	e^{-at}	
7	$\frac{1}{(s+a)^2}$	$t \cdot e^{-at}$	
8	$rac{s}{(s+a)^2}$	$(1-at)e^{-at}$	
9	$\frac{1}{1+sT}$	$rac{1}{T} e^{-t/T}$	
10	$\frac{a}{s^2 + a^2}$	sin at	
11	$\frac{a}{s^2 - a^2}$	sinh at	
12	$\frac{s}{s^2 + a^2}$	$\cos at$	
13	$\frac{s}{s^2-a^2}$	$\cosh at$	
14	$\frac{1}{s(s+a)}$	$rac{1}{a}\left(1-e^{-at} ight)$	
15	$rac{1}{s(1+sT)}$	$1 - e^{-t/T}$	
16	$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-bt} - e^{-at}}{a - b}$	

	Laplace transform $F(s)$		Time function $f(t)$
17	$\frac{s}{(s+a)(s+b)}$		$\frac{ae^{-at} - be^{-bt}}{a - b}$
18	$\frac{a}{(s+b)^2 + a^2}$		$e^{-bt}\sin at$
19	$\frac{s+b}{(s+b)^2+a^2}$		$e^{-bt}\cos at$
20	$\frac{1}{s^2+2\zeta\omega_0s+\omega_0^2}$		
		$\zeta = 0$	$rac{1}{\omega_0}\sin\omega_0 t$
		$\zeta < 1$	$\frac{1}{\omega_0\sqrt{1-\zeta^2}}e^{-\zeta\omega_0t}\sin\left(\omega_0\sqrt{1-\zeta^2}t\right)$
		$\zeta = 1$	$te^{-\omega_0 t}$
		$\zeta > 1$	$\left \frac{1}{\omega_0 \sqrt{\zeta^2 - 1}} e^{-\zeta \omega_0 t} \sinh\left(\omega_0 \sqrt{\zeta^2 - 1} t\right) \right $
21	$\frac{s}{s^2+2\zeta\omega_0s+\omega_0^2}$		
	$0 \leq \tau \leq \pi$:	$\zeta < 1$	$\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1-\zeta^2} t + \tau\right)$
			$ au = rctan rac{\omega_0 \sqrt{1-\zeta^2}}{-\zeta \omega_0}$
		$\zeta = 0$	$\cos \omega_0 t$
00	a	$\zeta = 1$	$\begin{pmatrix} (1-\omega_0 t)e^{-\omega_0 t} \\ 1 \\ (\sin(\alpha t - \phi) + e^{-bt} \sin \phi) \end{pmatrix}$
22	$\overline{(s^2+a^2)(s+b)}$		$\frac{1}{\sqrt{a^2+b^2}} \left(\sin(at-\phi) + e^{-\sin\phi} \sin\phi \right)$
			$\phi = \arctan \frac{a}{b}$

Transform lexicon, continued

Laplace transform table, continued

	Laplace transform $F(s)$		Time function $f(t)$
23	$\frac{s}{(s^2+a^2)(s+b)}$		$\frac{1}{\sqrt{a^2 + b^2}} \left(\cos(at - \phi) - e^{-bt} \cos \phi \right)$ $\phi = \arctan \frac{a}{b}$
24	$\frac{ab}{s(s+a)(s+b)}$		$1 + \frac{ae^{-bt} - be^{-at}}{b - a}$
25	$\frac{a^2}{s(s+a)^2}$		$1 - (1 + at)e^{-at}$
26	$\frac{a}{s^2(s+a)}$		$t - \frac{1}{a}(1 - e^{-at})$
27	$\frac{1}{(s+a)(s+b)(s+c)}$		$\frac{(b-c)e^{-at} + (c-a)e^{-bt} + (a-b)e^{-ct}}{(b-a)(c-a)(b-c)}$
28	$rac{\omega_0^2}{s(s^2+2\zeta\omega_0s+\omega_0^2)}$		
		$0 < \zeta < 1$	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin\left(\omega_0 \sqrt{1-\zeta^2} t + \phi\right)$
			$\phi = \arccos \zeta$
		$\zeta = 0$	$1 - \cos \omega_0 t$
29	$\frac{1}{(s+a)^{n+1}}$		$\frac{1}{n!}t^n e^{-at}$
30	$\frac{s}{(s+a)(s+b)(s+c)}$		$\frac{a(b-c)e^{-at} + b(c-a)e^{-bt} + c(a-b)e^{-ct}}{(b-a)(b-c)(a-c)}$
31	$rac{as}{\left(s^2+a^2 ight)^2}$		$\frac{t}{2}\sin at$
32	$\frac{1}{\sqrt{s}}$		$\frac{1}{\sqrt{\pi t}}$
33	$igg {1\over \sqrt{s}} F(\sqrt{s})$		$\left rac{1}{\sqrt{\pi t}} \int_0^\infty e^{-\sigma^2/4t} f(\sigma) d\sigma ight.$

Bode plot. Standard curves, continued

Stability

Stability conditions for low-order polynomials

$$\begin{array}{rl} s+a_1 & a_1>0 \\ s^2+a_1s+a_2 & a_1>0, & a_2>0 \\ s^3+a_1s^2+a_2s+a_3 & a_1>0, & a_2>0, & a_3>0, & a_1a_2>a_3 \end{array}$$

Routh's algorithm

where

Consider the polynomial

$$F(s) = a_0 s^n + b_0 s^{n-1} + a_1 s^{n-2} + b_1 s^{n-3} + \cdots$$

Assume that the coefficients a_i, b_i are real and that a_0 is positive. Form the table

The number of sign changes in the sequence $a_0, b_0, c_0, d_0 \cdots$ equal the number of roots for the polynomial F(s) in the right half plane Re s > 0. All the roots of the polynomial F(s) lie in the left half plane if all numbers a_0 , b_0, c_0, d_0, \ldots are positive.

Stability margins

Gain margin:

 $A_m = 1/|G_0(i\omega_0)|$

Phase margin:

 $\varphi_m = \pi + \arg G_0(i\omega_c)$

Delay margin:

 $L_m = \varphi_m / \omega_c$

State feedback and Kalman filtering

State feedback

If the system

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx$$

has the control law

$$u = -Lx + \ell_r r$$

then the closed-loop system is given by

$$\frac{dx}{dt} = (A - BL)x + B\ell_r r$$
$$y = Cx$$

Criterion for controllability. The controllable states belong to the linear subspace which is spanned by the columns of the matrix

$$W_s = \left(\begin{array}{ccc} B & AB & \cdots & A^{n-1}B \end{array} \right)$$

A system is controllable if and only if the matrix W_s has rank n.

Kalman filtering

Assume that only the output signal y can be directly measured. Introduce the model

$$\frac{dx}{dt} = A\hat{x} + Bu + K(y - C\hat{x})$$

The reconstruction error $\tilde{x} = x - \hat{x}$ satisfies

$$\frac{d\tilde{x}}{dt} = (A - KC)\tilde{x}$$

Criterion for observability. The subspace of unobservable states is the null space of the matrix

$$W_o = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}$$

A system is observable if and only if the matrix W_0 has rank n.

Lead-lag compensation

Lag compensator

$$G_K(s) = \frac{s+a}{s+a/M} = M \frac{1+s/a}{1+sM/a} \qquad M > 1$$

The rule of thumb

$$a = 0.1\omega_c$$

guarantees that the phase margin is reduced by less than 6° .

Lead compensator

$$G_K(s) = K_K N \frac{s+b}{s+bN} = K_K \frac{1+s/b}{1+s/(bN)}$$
 $N > 1$

The maximum phase advance is given by the figure below:

The peak of the phase curve is located at the frequency

$$\omega = b\sqrt{N}$$

The gain of the compensator at this frequency is

$$K_K \sqrt{N}$$

The Ziegler-Nichols methods

The Ziegler-Nichols step response method

Consider the step response for the *open-loop* system. The tangent is drawn from the point on the step response with the maximal slope. From the intersection of the tangent and the coordinate axes the gain a and time b are found. The PID-parameters are calculated from the table below.

The Ziegler-Nichols frequency method

This method is based on observations of the *closed-loop* system. Outline of the procedure:

- 1. Disconnect the integral and the derivative part of the PID-controller.
- 2. Adjust K until the system oscillates with constant amplitude. Denote this value of K as K_0 .
- 3. Measure the period T_0 for the oscillation. The different settings for the controller parameters are given in the table below.

Controller	K	T_i	T_d
Р	$0.5K_0$		
PI	$0.45K_{0}$	$T_{0}/1.2$	
PID	$0.6K_0$	$T_0/2$	$T_0/8$