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Matrix theory

Notations

Matrix of order m x n

A =































a11 a12 ⋅ ⋅ ⋅ a1n

a21 a22 ⋅ ⋅ ⋅ a2n
...

am1 am2 ⋅ ⋅ ⋅ amn































Vector of dimension n

x =































x1

x2
...

xn































Transpose

B = AT

bi j = a ji
(AB)T = BTAT

The matrix is symmetric if ai j = a ji.

Determinant

det A = pAp =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 ⋅ ⋅ ⋅ a1n

a21 a22 ⋅ ⋅ ⋅ a2n
...

an1 an2 ⋅ ⋅ ⋅ ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

If A is of order 2 x 2, then

det A = a11a22 − a12a21

In general

det A =
n

∑

i=1
ai j(−1)i+ j detMi j

=
n

∑

j=1
ai j(−1)i+ j detMi j

where Mi j is the matrix one obtains if row i and column j are removed

from the matrix A.

Inverse

A−1A = AA−1 = I (det A ,= 0)
If A is of order 2 x 2, then

A−1 = 1

det A









a22 −a12
−a21 a11
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In general,

A−1 = 1

det A
CT

where the elements in C are given by

ci j = (−1)i+ j detMi j

Eigenvalues and eigenvectors

The eigenvalues (λ i, i = 1, 2, . . . ,n) and the eigenvectors (xi, i = 1, 2, . . . ,n)
are given as the solutions to the equation system

Ax = λx

which has a solution if

det(λ I − A) = λn +α 1λ
n−1 +α 2λ

n−2 + ⋅ ⋅ ⋅+α n = 0

λn + α 1λ
n−1 + α 2λ

n−2 + ⋅ ⋅ ⋅ + α n is called the characteristic polynomial.
det(λ I − A) = 0 is called the characteristic equation.

2



Dynamical systems

State-space equations

dx

dt
= Ax + Bu

y= Cx + Du

x(t) = eAtx(0) +
∫ t

0

eA(t−τ )Bu(τ )dτ

Weighting function

y(t) =
∫ t

0

h(t− τ )u(τ )dτ

h(t) = CeAtB + Dδ (t)

Transfer function

Y(s) = G(s)U(s)
G(s) = C(sI − A)−1B + D = L

{

h(t)
}

The denominator of G is the characteristic polynomial to the matrix A.

Frequency response

u(t) = sinω t

y(t) = a sin(ω t+ϕ )

a = pG(iω )p
ϕ = argG(iω )

Linearization

If the nonlinear system

dx

dt
= f (x,u)

y= �(x,u)

is linearized around a stationary point (x0,u0), a change of variables

∆x = x − x0
∆u = u− u0
∆y= y− y0

then gives the linear system

d∆x

dt
= � f�x (x0,u0)∆x +

� f
�u (x0,u0)∆u

∆y= ���x (x0,u0)∆x +
��
�u(x0,u0)∆u
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State-space representations

1. Diagonal form

dz

dt
=































λ1 0

λ2
. . .

0 λn































z+































β 1

β 2
...

β n































u

y=


γ 1 γ 2 . . . γ n



 z+ Du

2. Observable canonical form

dz

dt
=









































−a1 1 0 . . . 0

−a2 0 1 0

...

−an−1 0 0 1

−an 0 0 0









































z+









































b1

b2
...

bn









































u

y=


 1 0 0 . . . 0



 z+ Du

3. Controllable canonical form

dz

dt
=







































−a1 −a2 . . . −an−1 −an
1 0 0 0

0 1 0 0
...

0 0 1 0







































z+





























1

0
...

0





























u

y=


 b1 b2 . . . bn



 z+ Du

The transfer function of the system is

G(s) = D + b1s
n−1 + b2sn−2 + ⋅ ⋅ ⋅+ bn
sn + a1sn−1 + ⋅ ⋅ ⋅+ an

= D + β 1γ 1
s− λ1

+ β 2γ 2
s− λ2

+ ⋅ ⋅ ⋅+ β nγ n
s− λn
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The Laplace transform

Operator lexicon

Laplace transform F(s) Time function f (t)

1 α F1(s) + β F2(s) α f1(t) + β f2(t) Linearity

2 F(s+ a) e−at f (t) Damping

3 e−asF(s)
{

f (t− a) t− a > 0
0 t− a < 0 Time delay

4
1

a
F
( s

a

)

(a > 0) f (at) Scaling in t-domain

5 F(as) (a > 0) 1

a
f
( t

a

)

Scaling in s-domain

6 F1(s)F2(s)
∫ t

0

f1(t− τ ) f2(τ ) dτ Convolution in t-domain

7
1

2π i

∫ c+i∞

c−i∞
F1(σ )F2(s−σ ) dσ f1(t) f2(t) Convolution in s-domain

8 sF(s) − f (0) f ′(t) Differentiation in t-domain

9 s2F(s) − s f (0) − f ′(0) f ′′(t)

10 snF(s) − sn−1 f (0) − ⋅ ⋅ ⋅− f (n−1)(0) f (n)(t)

11
dnF(s)
dsn

(−t)n f (t) Differentiation in s-domain

12
1

s
F(s)

∫ t

0

f (τ ) dτ Integration in t-domain

13

∫ ∞

s

F(σ ) dσ f (t)
t

Integration in s-domain

14 lim
s→0
sF(s) lim

t→∞
f (t) Final value theorem

15 lim
s→∞

sF(s) lim
t→0
f (t) Initial value theorem
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Transform lexicon

Laplace transform F(s) Time function f (t)

1 1 δ (t) Dirac function

2
1

s
1 Step function

3
1

s2
t Ramp function

4
1

s3
1
2
t2 Acceleration

5
1

sn+1
tn

n!

6
1

s+ a e−at

7
1

(s+ a)2 t ⋅ e−at

8
s

(s+ a)2 (1− at)e−at

9
1

1+ sT
1
T
e−t/T

10
a

s2 + a2 sin at

11
a

s2 − a2 sinh at

12
s

s2 + a2 cos at

13
s

s2 − a2 cosh at

14
1

s(s+ a)
1
a

(

1− e−at
)

15
1

s(1+ sT) 1− e−t/T

16
1

(s+ a)(s+ b)
e−bt − e−at
a− b
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Transform lexicon, continued

Laplace transform F(s) Time function f (t)

17
s

(s+ a)(s+ b)
ae−at − be−bt
a− b

18
a

(s+ b)2 + a2 e−bt sin at

19
s+ b

(s+ b)2 + a2 e−bt cos at

20
1

s2 + 2ζ ω 0s+ω 20

ζ = 0 1
ω0
sinω 0t

ζ < 1 1

ω0
√
1−ζ 2

e−ζ ω0t sin
(

ω 0
√

1− ζ 2 t
)

ζ = 1 te−ω0t

ζ > 1 1

ω0
√

ζ 2−1
e−ζ ω0t sinh

(

ω 0
√

ζ 2 − 1 t
)

21
s

s2 + 2ζ ω 0s+ω 20

0 ≤ τ ≤ π : ζ < 1 1√
1−ζ 2

e−ζ ω0t sin
(

ω 0
√

1− ζ 2 t+ τ
)

τ = arctan ω0
√
1−ζ 2

−ζ ω0

ζ = 0 cosω 0t

ζ = 1 (1−ω 0t)e−ω0t

22
a

(

s2 + a2
)

(s+ b)
1√
a2 + b2

(

sin(at− φ) + e−bt sinφ
)

φ = arctan a
b
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Laplace transform table, continued

Laplace transform F(s) Time function f (t)

23
s

(

s2 + a2
)

(s+ b)
1√
a2 + b2

(

cos(at− φ) − e−bt cosφ
)

φ = arctan a
b

24
ab

s(s+ a)(s+ b) 1+ ae
−bt − be−at
b− a

25
a2

s(s+ a)2 1− (1+ at)e−at

26
a

s2(s+ a) t− 1
a
(1− e−at)

27
1

(s+ a)(s+ b)(s+ c)
(b− c)e−at + (c− a)e−bt + (a− b)e−ct

(b− a)(c− a)(b− c)

28
ω 20

s(s2 + 2ζ ω 0s+ω 20)

0 < ζ < 1 1− 1√
1−ζ 2

e−ζ ω0t sin
(

ω 0
√

1− ζ 2 t+ φ
)

φ = arccosζ

ζ = 0 1− cosω 0t

29
1

(s+ a)n+1
1

n!
tne−at

30
s

(s+ a)(s+ b)(s+ c)
a(b− c)e−at + b(c− a)e−bt + c(a− b)e−ct

(b− a)(b− c)(a− c)

31
as

(

s2 + a2
)2

t

2
sin at

32
1√
s

1√
π t

33
1√
s
F
(√
s
) 1√

π t

∫ ∞

0

e−σ 2/4t f (σ ) dσ
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Bode plot. Standard curves, continued
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Stability

Stability conditions for low-order polynomials

s+ a1 a1 > 0
s2 + a1s+ a2 a1 > 0, a2 > 0

s3 + a1s2 + a2s+ a3 a1 > 0, a2 > 0, a3 > 0, a1a2 > a3

Routh’s algorithm

Consider the polynomial

F(s) = a0sn + b0sn−1 + a1sn−2 + b1sn−3 + ⋅ ⋅ ⋅

Assume that the coefficients ai, bi are real and that a0 is positive. Form

the table

a0 a1 a2 . . .

b0 b1 b2 . . .

c0 c1 c2 . . .

d0 d1 d2 . . .
...

where
c0 = a1 − a0b1/b0
c1 = a2 − a0b2/b0
...

d0 = b1 − b0c1/c0
d1 = b2 − b0c2/c0
...

The number of sign changes in the sequence a0, b0, c0,d0 ⋅ ⋅ ⋅ equal the num-
ber of roots for the polynomial F(s) in the right half plane Re s > 0. All
the roots of the polynomial F(s) lie in the left half plane if all numbers a0,
b0, c0, d0, . . . are positive.
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Stability margins
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Gain margin:

Am = 1/ pG0(iω 0)p
Phase margin:

ϕm = π + argG0(iω c)
Delay margin:

Lm = ϕm/ω c

13



State feedback and Kalman filtering

State feedback

If the system
dx

dt
= Ax + Bu

y= Cx
has the control law

u = −Lx + {rr
then the closed-loop system is given by

dx

dt
= (A− BL)x + B{rr

y= Cx

Criterion for controllability. The controllable states belong to the li-

near subspace which is spanned by the columns of the matrix

Ws =


 B AB ⋅ ⋅ ⋅ An−1B




A system is controllable if and only if the matrix Ws has rank n.

Kalman filtering

Assume that only the output signal y can be directly measured. Introduce

the model
dx̂

dt
= Ax̂ + Bu+ K (y− Cx̂)

The reconstruction error x̃ = x − x̂ satisfies

dx̃

dt
= (A− KC)x̃

Criterion for observability. The subspace of unobservable states is the

null space of the matrix

Wo =





























C

CA
...

CAn−1





























A system is observable if and only if the matrix W0 has rank n.
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Lead-lag compensation

Lag compensator

GK (s) =
s+ a
s+ a/M = M 1+ s/a

1+ sM/a M > 1

The rule of thumb

a = 0.1ω c
guarantees that the phase margin is reduced by less than 6○.

Lead compensator

GK (s) = KKN
s+ b
s+ bN = KK

1+ s/b
1+ s/(bN) N > 1

The maximum phase advance is given by the figure below:

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

N

∆
ϕ
m

The peak of the phase curve is located at the frequency

ω = b
√
N

The gain of the compensator at this frequency is

KK
√
N
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The Ziegler–Nichols methods

The Ziegler–Nichols step response method

Consider the step response for the open-loop system. The tangent is drawn

from the point on the step response with the maximal slope. From the

intersection of the tangent and the coordinate axes the gain a and time b

are found. The PID-parameters are calculated from the table below.

a

b

y

t

Controller K Ti Td

P 1/a
PI 0.9/a 3b

PID 1.2/a 2b 0.5b

The Ziegler–Nichols frequency method

This method is based on observations of the closed-loop system. Outline of

the procedure:

1. Disconnect the integral and the derivative part of the PID-controller.

2. Adjust K until the system oscillates with constant amplitude. Denote

this value of K as K0.

3. Measure the period T0 for the oscillation. The different settings for

the controller parameters are given in the table below.

Controller K Ti Td

P 0.5K0

PI 0.45K0 T0/1.2
PID 0.6K0 T0/2 T0/8
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