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From Lecture 1

• PID-control
• State-space model of plant
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State Space Models



State Space Models

Consider a linear differential equation of order n

dny
dtn

+ a1
dn−1y
dtn−1

+ . . .+ any = b0
dnu
dtn

+ b1
dn−1u
dtn−1

+ . . .+ bnu

For linear systems the superposition principle holds:

u = u1 =⇒ y = y1 and

u = u2 =⇒ y = y2 implies

u = c1 · u1 + c2 · u2 =⇒ y = c1 · y1 + c2 · y2

and vice versa; We can consider the output from a sum of signals by
considering the influence from each component.

Q: Why is this not true for nonlinear systems? Example?
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State Space Models

Consider a linear differential equation of order n
dny
dtn + a1

dn−1y
dtn−1 + . . .+ any = b0

dnu
dtn + b1

dn−1u
dtn−1 + . . .+ bnu

An alternative to ONE differential quation of order nth is to write it as
a system of n coupled differential equations, each or order one.

General State space representation:

ẋ1 = f1(x1, x2, ...xn, u)
ẋ2 = f2(x1, x2, ...xn, u)

...

ẋn = fn(x1, x2, ...xn, u)
y = g(x1, x2, ...xn, u)

The last row is a static equation relating the introduced states (x)
with the input u, and the output y.
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State Space Models

Consider a linear differential equation of order n
dny
dtn + a1

dn−1y
dtn−1 + . . .+ any = b0

dnu
dtn + b1

dn−1u
dtn−1 + . . .+ bnu

An alternative to ONE differential quation of order nth is to write it as
a system of n coupled differential equations, each or order one.
Linear state space representation:

ẋ1 = a11x1 + ...+ a1nxn + b1u
ẋ2 = a21x1 + ...+ a2nxn + bnu

...

ẋn = an1x1 + ...+ annxn + bnu
y = c1x1 + c2x2 + ...+ cnx2 + du


ẋ1
ẋ2

ẋn

 =


a11 a12 a1n
a21 a22 a2n

an1 an2 ann



x1
x2

xn

 +


b1
b2

bn

 u

y =
[
c1 c2 ... cn

] 
x1
x2

xn

 + du

NOTE: Only states (x) and inputs (u) are allowed on the right hand side in
Eq.-system above (in f and g) for it to be called a state-space representation!
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State Space Models

Process
u y

Linear dynamics can be described in the following form

ẋ = Ax+ Bu
y = Cx (+Du)

Here x ∈ Rn is a vector with states. States can have a physical
”interpretation”, but not necessary.

In this course u ∈ R and y ∈ R will be scalars.

(For MIMO systems, see Multivariable Control (FRTN10))
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Example

Example
The position of a mass m controlled by a force u is described by

mẍ = u

where x is the position of the mass.

m
u

Introduce the states x1 = ẋ and x2 = x and write the system on state
space form. Let the position be the output.
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Dynamical Systems

Continous Time Discrete Time
(sampled)

Linear This course Real-Time Systems / Signal proc.
(FRTN01) .

Nonlinear Nonlinear Control and
Servo Systems (FRTN05)
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Linearization - Why?

Many systems are nonlinear. However, one can approximate them
with linear ones. This to get a system that is easier to analyze.

A few examples of nonlinear systems:

• Water tanks (Labs 1,2)
• Air resistance
• Action potentials in neurons
• Pendulum under the influence of gravity
• ...

12



Linearization - How?

Given a nonlinear system ẋ = f(x,u), y = g(x,u)

1. Determine a stationary point (x0,u0) to linearize around

ẋ0 = 0 ⇔ f(x0,u0) = 0

2. Make a first order Taylor series expansions of f and g around
(x0,u0):

f(x,u) ≈ f(x0,u0) +
∂

∂x
f(x0,u0)(x− x0) +

∂

∂u
f(x0,u0)(u− u0)

g(x,u) ≈ g(x0,u0) +
∂

∂x
g(x0,u0)(x− x0) +

∂

∂u
g(x0,u0)(u− u0)

Notice that f(x0,u0) = 0 and let y0 = g(x0,u0)
3. Introduce ∆x = x− x0, ∆u = u− u0 and ∆y = y− y0
4. The state-space equations in the new variables are given by:

∆̇x = ẋ− ẋ0 = f(x,u) ≈ ∂

∂x
f(x0,u0)∆x+

∂

∂u
f(x0,u0)∆u = A∆x+ B∆u

∆y = g(x,u)− y0 ≈
∂

∂x
g(x0,u0)∆x+

∂

∂u
g(x0,u0)∆u = C∆x+ D∆u
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ẋ0 = 0 ⇔ f(x0,u0) = 0

2. Make a first order Taylor series expansions of f and g around
(x0,u0):

f(x,u) ≈ f(x0,u0) +
∂

∂x
f(x0,u0)(x− x0) +

∂

∂u
f(x0,u0)(u− u0)

g(x,u) ≈ g(x0,u0) +
∂

∂x
g(x0,u0)(x− x0) +

∂

∂u
g(x0,u0)(u− u0)

Notice that f(x0,u0) = 0 and let y0 = g(x0,u0)
3. Introduce ∆x = x− x0, ∆u = u− u0 and ∆y = y− y0
4. The state-space equations in the new variables are given by:
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ẋ0 = 0 ⇔ f(x0,u0) = 0

2. Make a first order Taylor series expansions of f and g around
(x0,u0):

f(x,u) ≈ f(x0,u0) +
∂

∂x
f(x0,u0)(x− x0) +

∂

∂u
f(x0,u0)(u− u0)

g(x,u) ≈ g(x0,u0) +
∂

∂x
g(x0,u0)(x− x0) +

∂

∂u
g(x0,u0)(u− u0)

Notice that f(x0,u0) = 0 and let y0 = g(x0,u0)

3. Introduce ∆x = x− x0, ∆u = u− u0 and ∆y = y− y0
4. The state-space equations in the new variables are given by:
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Example - Linearization

Example
The dynamics of a specific system is described by

ẋ1 = x2

ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1

y = x21 + u2

a) Find all stationary points
b) Linearize the system around the stationary point corresponding

to u0 = 3

14



The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1 = f2(x1, x2, u)

y = x21 + u2 = g(x1, x2, u)

(a) Find stationary point for u0 = 3 : (ẋ1 = ẋ2 = 0)

0 = x2

0 = −x
4
2
x21

+ x1 +
√
3+ 1

y = x21 + 32

=⇒ (x10, x20,u0) = (−2, 0, 3)
y0 = g(x10, x20,u0) = 13
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1 = f2(x1, x2, u)

y = x21 + u2 = g(x1, x2, u)

=⇒ (x10, x20,u0) = (−2, 0, 3)
y0 = g(x10, x20,u0) = 13

(b) Linearize around stationary point (−2, 0, 3)

∂f1
∂x1

= 0, ∂f1
∂x2

= 1, ∂f1
∂u

= 0,

∂f2
∂x1

= +2x
4
2
x31

+ 1, ∂f2
∂x2

= −4x
3
2
x21
,

∂f2
∂u

=
1

2
√
u+ 1

,

∂g
∂x1

= 2x1,
∂g
∂x2

= 0, ∂g
∂u

= 2u,
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ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1 = f2(x1, x2, u)

y = x21 + u2 = g(x1, x2, u)

=⇒ (x10, x20,u0) = (−2, 0, 3)
y0 = g(x10, x20,u0) = 13

(b) Linearize around stationary point (−2, 0, 3)

∂f1
∂x1 |{x0, u0}

= 0, ∂f1
∂x2 |{x0, u0}

= 1, ∂f1
∂u |{x0, u0}

= 0,

∂f2
∂x1 |{x0, u0}

= 1, ∂f2
∂x2 |{x0, u0}

= 0, ∂f2
∂u |{x0, u0}

=
1
4
,

∂g
∂x1 |{x0, u0}

= −4, ∂g
∂x2 |{x0, u0}

= 0, ∂g
∂u |{x0, u0}

= 6,
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The dynamics of a specific system is described by
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ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1 = f2(x1, x2, u)
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=⇒ (x10, x20,u0) = (−2, 0, 3)
y0 = g(x10, x20,u0) = 13

(b) Linearize around stationary point (−2, 0, 3)

f(x,u)
∂x |{x0, u0}

= A =

[
0 1
1 0

]
f(x,u)
∂u |{x0, u0}

= B =

[
0
1
4

]
g(x,u)
∂x |{x0, u0}

= C =
[
−4 0

] g(x,u)
∂u |{x0, u0}

= D =
[
6
]
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The dynamics of a specific system is described by

ẋ1 = x2 = f1(x1, x2, u)

ẋ2 = −x
4
2
x21

+ x1 +
√
u+ 1 = f2(x1, x2, u)

y = x21 + u2 = g(x1, x2, u)

=⇒ (x10, x20,u0) = (−2, 0, 3)
y0 = g(x10, x20,u0) = 13

Introduce
∆x1 = x1 − x10, ∆x2 = x2 − x20
∆u = u− u0 ∆y = y− y0

The state-space equations in the new variables are given by:

[
∆x1
dt
∆x2
dt

]
=

[
0 1
1 0

][
∆x1
∆x2

]
+

[
0
1
4

]
u

∆y =
[
−4 0

] [∆x1
∆x2

]
+
[
6
]
u 15
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Laplace Transformation

Let f(t) be a function of time t, the Laplace transformation L(f(t))(s)
is defined as

L(f(t))(s) = F(s) =
∫ ∞

0
e−stf(t)dt

Example:

L
(

df(t)
dt

)
(s) = sF(s)− f(0)

Initial values helps to calculate what happens in transient phase!

Assuming that f(0) = f′(0) = · · · = fn−1(0) = 0 (common assumption
during this course, but not always!!) it has the property that

L
(

dnf(t)
dtn

)
(s) = snF(s)

L
(∫ t

0
f(τ)de

dτ

)
(s) = 1

s
F(s) (integrator)

See Collection of Formulae for a table of Laplace transformations. 17



Example - Transfer Function

Example
A system’s dynamics is described by the differential equation

ÿ+ a1ẏ+ a2y = b1u̇+ b2u.

After Laplace transformation we get

(s2 + a1s+ a2)Y(s) = (b1s+ b2)U(s)

which can be written as

Y(s) =

G(s)︷ ︸︸ ︷
b1s+ b2

s2 + a1s+ a2
U(s) = G(s)U(s)

G(s) is called the transfer function of the system.

18



Transfer Function

Relation between control signal U(s) and output Y(s):

Y(s) = G(s)U(s)

G(s) often fraction of polynomal, i.e.,

G(s) = Q(s)
P(s)

Zeros of Q(s) are called zeros of the system, zeros of P(s) are called
poles of the system.

The poles play a very important role for the system’s behavior.

19



From State Space to Transfer Function

For a system on state space form

ẋ = Ax+ Bu
y = Cx+ Du

the transfer function is given by

G(s) = C(sI− A)−1B+ D

Observe: the denominator of G(s) is given by P(s) = det(sI− A), so
eigenvalues of A are poles of the system.

20



From Transfer Function to State Space

Can be done in several ways, see Collection of Formulae.

Example
A system’s transfer function is

G(s) = 2s+ 1
s3 + 4s− 8

Write the system on a state space form of your choice.

21



Three Ways to Describe a Dynamical System

Differential equation
ÿ+ a1ẏ+ a2y = b1u̇+ b2u

State space
ẋ = Ax+ Bu
y = Cx+ Du

Transfer function
Y(s) = G(s)U(s) = Q(s)

P(s)U(s)

G(s) = C(sI− A)−1B+ D

Collection of Formulae

L
(

dnf(t)
dtn

)
(s) = snF(s)

x1 = y
x2 = ẏ
...

22



Block Diagram Representation



Block Diagram - Transfer Function

When the blocks in a block diagram are replaced by transfer
functions, it is possible to describe the relations between signals in
an easy way.

GP
u y

Y(s) = GP(s)U(s)

24



Block Diagram - Components

Most block diagrams consist of three components:

• Blocks - Transfer functions
• Arrows - Signals
• Summations

GR GP
U

+
R E Y

−1

where R, E, U, Y are the Laplace transformations of the reference r(t),
control error e(t), control signal u(t), and output y(t), respectively.

25



Determine Transfer Function From Block Diagram

GR GP
U

+
R E Y

−1

Y = GPU, U = GRE, E = R− Y

From the equations above the transfer function between r and y is

Y =
GPGR

1+ GPGR
R

26



Example - Transfer Functions

Example
Two systems, G1 and G2, are interconnected as in the figure below

G1

G2

+

+

u y

Compute the transfer function from u to y, Gyu.

27



Summary

This lecture

1. State Space Models

2. Linearization

3. Transfer Function

4. Block Diagram Representation

Next lecture

• Impulse Response Analysis
• Step Response Analysis
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