
Last Week

I Laplace transform - single vs double sided

I Initial and Final Value Theorem

Initial and Final Value Theorem

Initial Value Theorem Suppose that f is causal and that the Laplace
transform F (s) is rational and strictly proper. Then

lim
t→+0

f(t) = lim
s→+∞

sF (s)

Final Value Theorem. Suppose that f is causal with rational Laplace
transform F (s). If all poles of sF (s) have negativ real part, then

lim
t→+∞

f(t) = lim
s→+0

sF (s)
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Argument variation

Let Γ be a simple closed curve in the complex plane surrounding the
domain D.

The change in the argument for the complex function F (s) when s
follows the boundary to D (i.e., follows Γ) in a counter-clockwise
(CCW) direction, is called the argument variation of F along Γ and is
denoted ∆Γ argF :

∆Γ argF :=
∫

Γ

(
d

ds
argF (s)

)
ds

(Cauchy’s) argument principle

Suppose that F (s) is analytic in a neighborhood of D except for a
finite number of poles in D. Then

1
2π∆Γ argF = NF − PF

where NF is the number of zeros and PF the number of poles of F
in D.

Proof of the Argument Principle

The argument function is the imaginary part of the complex logarithm,
so

∆Γ argF =
∫

Γ

(
d

ds
argF (s)

)
ds

= Im
∫

Γ

(
d

ds
logF (s)

)
ds = Im

∫

Γ

F ′(s)
F (s) ds

F ′/F is singular exactly in the poles and zeros of F .

Proof cont’d

F (s) = (s− z1) · · · (s− zNF
)

(s− p1) · · · (s− pPF
)G(s)

where G has no poles and zeros in D. Then

logF (s) =
NF∑

j=1
log(s− zj)−

PF∑

j=1
log(s− pj) + logG(s)

Derivation and integration gives

Im
1

2π

∫

Γ

d

ds
logF (s)ds = 1

2π Im
∫

Γ




NF∑

j=1

1
s− zj

−
PF∑

j=1

1
s− pj

+ G′(s)
G(s)


 ds

= NF − PF
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Nyquist Criterion

Regler AK: If L(s) is stable, then the closed loop system
[1 + L(s)]−1 is also stable if and only if the Nyquist curve L(iω) does
not encircle −1.

More general: The difference of the number of unstable poles to
[1 + L(s)]−1 and the number of unstable poles of L(s) equals the
number of clockwise encirclements of the point −1.
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Proof of the Nyquist criterion

Apply the argument principle on

F (s) = 1 + L(s)

where D as in picture, and ra-
dius large enough to contain all
poles and zeros in the RHPL.

Im

Re

D

Then
PF = number of unstable poles to 1 + L(s) = Popen
NF = number of unstable poles to [1 + L(s)]−1 = Pclosed

1
2π∆Γ argF = number of CCW encirclements of 0 by F (s)

when s moves around boundary of D CCW
= nr of clockwise encircl. of -1 of Nyquist curve L(iω)

(direction is opposite, goes from −∞ to∞)

Pclosed−Popen = nr of clockwise encirclements around -1 of L(iω)
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Example: Trailer

t2

u

t1

When trailer moves forward with speed v = 1:

Y (s) = 1
(s+ 2)(s+ 1)︸ ︷︷ ︸

G(s)

U(s)

Example: Trailer moving forward with P-control

P-control: U(s) = −kY (s). Gives L = kG.

s = tf(’s’)
G = 1/((s+2)*(s+1))
nyquist(G)
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Nyquist Diagram
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Stable if L(iω) = k 1
(iω+2)(iω+1) does not encircle −1.

True for all k > 0 (and some k < 0)

Example: Trailer moving backwards with P-control

Now G(s) = 1
(s−2)(s−1)

G = 1/((s-2)*(s-1))
nyquist(G)
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When does L(iω) = k 1
(iω−2)(iω−1) encircle −1 two times

counter-clockwise?
Never. So P-control can not be used.

Example: Trailer moving backwards with PD-control

Lets try this PD-controller: U(s) = −k(1 + s)Y (s).
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Stable if L(iω) = k 1+iω
(iω−2)(iω−1) encircles −1 two times

counter-clockwise.
True when k > 3. PD-control works
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Example: System with time delay

Is the system

ẏ(t) = y(t)− 2y(t− 0.5)

stable?

This can be viewed as a feedback system

ẏ(t) = y(t) + u(t)
u(t) = −2y(t− 0.5)

Can use Nyquist criterion with L = P (s)C(s) = 2e−0.5s

s−1

Example: System with time delay

ẏ(t) = y(t)− 2y(t− 0.5)
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Stable, since L(iω) = 2e−i0.5ω

iω−1 encircles −1 one time counter
clock-wise.
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Design tradeoffs

A control system should typically have high gain |P (iω)C(iω)| at low
frequencies to reduce impact of disturbances and to follow the
reference signal r, but low gain at high frequencies to avoid stability
problems and the effect of measurement noise

Bode Magnitude Diagram
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How fast can one go from high gain to low gain for different
frequencies?

Bode’s relations — Approximative version

If G(s) is stable and has no zeros in the RHPL and no time delay then

argG(iω0) ≈ π

2
d log |G(iω)|
d logω

∣∣∣∣
ω=ω0

If there are zeros in the RHPL or time delay the phase will be smaller

Conclusion: The slope of the amplitude determines the phase.

Phase -180 degree corresponds to slope -2 (with log-log scales)

At the cut off frequency (where the amplitude equals one) the slope
needs to be > −2 (around -1.5 is recommended). Otherwise the
Nyquist curve will go the wrong way around -1

Can not reduce loop gain too fast.

Bode’s relation(s) — Exact version

If G(s) is stable and minimum phase (no zeros in RHPL or time
delays) then

argG(iω0) = 1
π

∫ ∞

0

d log |G(iω)|
d logω log

∣∣∣ω + ω0
ω − ω0

∣∣∣
︸ ︷︷ ︸

weight function

d logω
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Bode’s relation – Proof

I We first show

argG(iω0) = 2ω0
π

∫ ∞

0

log |G(iω)| − log |G(iω0)|
ω2 − ω2

0
dω

I Changes of variables and partial integration give

argG(iω0) = 1
π

∫ ∞

0

d log |G(iω)|
d logω log

∣∣∣ω + ω0
ω − ω0

∣∣∣
︸ ︷︷ ︸

weight function

d logω
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Bode’s relation – Proof cont’d

Let C be the depicted curve, then

∫

C

logG(s)− log |G(iω0)|
s2 + ω2

0
ds = 0

since the function is analytic on and inside C

Integal over C satisfies:

∫

C
=
∫

Cr

+
∫

Cr

+
∫ iR

−iR
+
∫

CR

= 0

Im

Re
Cr

CR−ω0

ω0

−R

R

Bode’s relation – Proof cont’d

I Integral on CR:
∫
Cr
→ 0 as R→∞ (proper)

I Integral on (both) Cr (r → 0):

∫

Cr

logG(s)− log |G(iω0)|
s2 + ω2

0
ds =

∫

Cr

logG(s)− log |G(iω0)|
(s− iω0)(s+ iω0) ds

=
∫

Cr

log(|G(s)|ei argG(s)/|G(iω0)|)
(s− iω0)(s+ iω0) ds

s→iω0= 1
2iω0

∫

Cr

log(ei argG(iω0))
s− iω0

ds

= i argG(iω0)
2iω0

∫

Cr

1
s− iω0

ds = i argG(iω0)
2ω0

π

I Therefore, when R→∞ and r → 0:

i argG(iω0)
ω0

π = −i
∫ ∞

−∞

logG(iω)− log |G(iω0)|
ω2

0 − ω2 dω

Bode’s relation – Proof cont’d

I Rewrite from previous slide:

argG(iω0) = −ω0
π

∫ ∞

−∞

logG(iω)− log |G(iω0)|
ω2

0 − ω2 dω

I Since logG(iω) = log |G(iω)|+ i arg(G(iω)) and
I log |G(iω)| is even
I arg(G(iω)) is odd:

argG(iω0) = 2ω0
π

∫ ∞

0

log |G(iω)| − log |G(iω0)|
ω2 − ω2

0
dω

which shows the first claim

Bode’s relation – Proof cont’d

I To prove the second claim, we change variable ω = ex:

∫ ∞

−∞

log |G(iex)| − log |G(iω0)|
e2x − ω2

0
exdx

=
∫ ∞

−∞
(log |G(iex)| − log |G(iω0)|) 1

ex − ω2
0e
−xdx

I Define

φ(x) = log ex + 1
|ex − 1| with

d

dx
φ(x) = − 2

ex − e−x

then

d

dx
φ(x− logω0) = − 2

ex−logω0 − e−x+logω0

= − 2
ex/ω0 − e−xω0

= − 2ω0
ex − ω2

0e
−x

Bode’s relation – Proof cont’d

I Partial integration gives

2ω0
π

∫ ∞

−∞
(log |G(iex)| − log |G(iω0)|) 1

ex − ω2
0e
−xdx

= − 1
π

∫ ∞

−∞
(log |G(iex)| − log |G(iω0)|) d

dx
φ(x− logω0)dx

= 1
π

∫ ∞

−∞

d log |G(iex)|
dx

φ(x− logω0)dx

− [(log |G(iex)| − log |G(iω0)|)φ(x− logω0)]x→∞x→−∞

= 1
π

∫ ∞

−∞

d log |G(iex)|
dx

φ(x− logω0)dx

I Changing variables back, x = logw, gives:

argG(iω0) = 1
π

∫ ∞

−∞

d log |G(iω)|
d logω

∣∣∣∣∣
elogω−logω0 + 1
elogω−logω0 − 1

∣∣∣∣∣ d logω

which is readily rewritten to Bode’s relation

Hint to problem 1c

If one first determines Y (s) one can then have use of the fact that for
any complex number v we have the identity

(sI−A)−1(s−v)−1 = −(sI−A)−1(vI−A)−1+(vI−A)−1(s−v)−1.

(If you use this identity, you should prove it!) Apply with v = iω and
v = −iω, combine the results and do inverse laplace.

Also remember that Im(z) = (z − z̄)/(2i) and sinωt = Im(eiωt) and
L(etA) = (sI −A)−1
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