State Space Realizations (pp 139-150)

G(s), denominator and numerator, poles and zeros
Change of coordinates, diagonal and controllable form
State-feedback

Observers

Feedback from estimated states

e 6 ¢ 6 6 ¢ ¢

Integral action by disturbance model
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Lecture 5

@ Controllability — Existence of control signal
@ Which state directions can be controlled ?
@ Observability — Determine state
@ Which state directions can not be seen?

@ Kalman’s decomposition theorem

@ Cancelled dynamics <=> lack of controllability or observability
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Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

@ any state zg can be made an equilibrium
@ any state trajectory z(t) can be obtained
@ any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the following
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Controllability

The state equation
#(t) = Az(t) + Bu(t), x(0)=x9

is called controllable if for any x¢ and T > 0, there exists u(t) such
that 2(7") = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:

“for xo = 0 and any z; and T' > 0, there exists u(t) such that
z(T) = z1” (“Controllable from origin”)

‘The audience is thinking! ‘

, T
Hint: 2(T) = eATazg + [y eAT =) Bu(t)dt



Controllability Gramian

The matrix

T
W(T) = / e~ BBTe~ A" gt
0

is called the controllability Gramian.
Note that it is positive semidefinite, W (T') > 0

The main controllability result is the following
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Theorem Controllability Test

The following conditions are equivalent:

(i) The system @(t) = Az(t) + Bu(t) is controllable.
(i) rank [B AB A’B ... A" 1B] =n.

(iliy W(T) is invertible for any T' > 0

)
)
)
(iv) Forany A € C we have rank[A — A\ B]=n

We will prove (i) = (i1) = (4ii) = (7)

The condition (iv), not proved here, is called the PBH test
(Popov-Belevitch-Hautus).
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Analysing controllability

The system is by definition controllable iff we for any zg and T" can find
control signal u(t),¢ € [0, 7] that solves (see hint some slides above)

T
—x :/0 e~ Bu(t)dt (*)

Cayley-Hamilton’s theorem (google it) says that A* for k > n can be
written as a linear combination of I, A, A, ... A" !, so

00 n—1
e M=% (_kt')kAk =" fu(t)AF,  (for some fi(t)).
k=0 : k=0

Therefore the condition (x) can be written
—z0= [BAB A?B ... A" !'B|F(u), (%%)
for some vector F'(u) with elements Fj(u) = fOT fe(@)u(t)dt
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Proof of (i) = (i7)

Proof by contradiction: Assume (ii) does not hold, i.e. the controllability
matrix does not have full rank.

This means there is a vector, lets call it —x¢, that is not in the column

span of
[B AB A’B ... A" 'B]

This contradicts (x%), so (i) does not hold.
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Proof of (ii) = (iii)

Assume (iii) does not hold. Then there is a p # 0 so W (T)p = 0.

0=p'W(T)p= /OT (pTe_AtB) (BTe_ATtp) dt

Therefore
pTe_AtB =0, Vt.

Derivating this & times and setting t = 0 gives p? A*B = 0.
Hence we have

pT[B AB A’B ... A" 'B] =0.

Therefore (ii) does not hold.
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(7i1) = (i) Explicit construction of u(t)

If W (T) is invertible, then for any initial state x(, the control signal
u(t) = B e HW(T)) g

gives x(T') = 0 (check that (x) some slides before is satisfied!).
Hence the system is controllable.
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Another interpretation of 1V (7")

One can prove (using techniques from next lecture) that the minimal
(squared) control energy, defined by [u|| := [, |u|?dt, needed to
move from z(0) = z to z(T") = 0 equals

x5 (W(T) ™ o

Gives nice formula for which state directions are costly to control.

W (T') large in some direction means easy to control in that direction
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Which trailer is controllable?

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 5



u
th
02
0] (-2 o l6u] , |2

Automatic Control LTH, 2014 FRT130 Control Theory, Lecture 5



Vﬁ X
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Observability

The system
d
d—f = Az, z(0) =z
y=Cx

is called observable if 2o can be uniquely determined from yo ) (for
any T > 0)

This is the same as saying that the only x( for which y(¢) = 0 for all ¢
is the trival case xg = 0

| WHY 2 The audience is thinking! |
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Which trailer is observable?

02
01
u
Y

01
Which trailer is observable 1% y=01?1fy =057
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Theorem - Observability Criteria

The following are equivalent

(i) The system & = Az, y = Cx is observable

C
CA
(i) rank . =n

VAT
(iii) W(T) is invertible for any 7' > 0

(iv) Forany A € C we have rank [A EM] =n

Here the observability Gramian W (T') is defined as

T
W(T) = / AT et
0
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Proof that (i) < (ii)

If (i) does not hold, then there is a quiet state g # 0 so that
y(t) = Cetleg =0, Vit

Derivating this & times and setting t = 0 we get CA*z, = 0. This
shows (ii) doesn’t hold.

On the other hand, if (ii) does not hold then a nonzero x( can be found
so CA¥zy =0fork =0,...n — 1. By Cayley-Hamilton this means
CAFzy = 0 also for k > n, so by power expansion of et

y(t) = Cetlzg =0, W,

which says that (i) does not hold.
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Proof that (ii) < (iii)

This follows easily by substituting (A, B) with (A”, C™T') in (ii) and (i)
in the controllability theorem earlier

This illustrates a so called duality between the two theorems
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Bonus Proof of (iii)=> (i)

Maybe you didn’t like the earlier proof of (ii) = (i) that used derivation
of y(t). Itis hard to implement in practice. If there e.g. is measurement
noise on y(t) we would like a better way of determining .

The dual result of the construction of the energy-optimal w(t) in the
controllability theorem is the following calculation:

Since y(t) = CeAzy we have that

T T
/ ATHCTy()dt = W (T) o
0

When W (¢) is invertible we can hence find z¢ by
bW T
0 = (W(T))™" / AT CT (1) dt.
0

This way of determining x( is actually optimally robust against
measurement noise, in a sense described in Lecture 6
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Controllability — state transformation

Theorem:
If the system is noncontrollable, say rank(C) = g < n, then there is a
state transformation x = V' z so that in the new state coordinates
12111 12112 By
AV =V ~ and B=V ,
[ 0 Ay 0

(A11, By) controllable subsystem, ¢ x ¢
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Observability — state transformation

Theorem:
If the system is non-observable, say rank(Q) = ¢ < n, then there is a
state transformation so that in the new state coordinates

A 0

AV =V <
[A21 Ago

] ochCV = (&1 0],

(A;1,C1) observable subsystem, ¢ x ¢
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Kalman’s decomposition theorem

With a state transformation that splits the controllable subspace (and
its complement) into nonobservable subspace and complement we get
the system on a nice form

dr (A2 Az A Ay el Bz,
dt 0 0 As3 0 0
0 0 Ays Ay 0

y:(Cl 0 02 0]33

G(S) = 01(81 — All)_lBl

lllustrates what subparts of the system that influences the input-output
behavior
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Kalman’s decomposition theorem

The audience if thinking: What blocks in this figure corresponds to
parts 1,2,3,4 on the previous slide?
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Kalman’s decomposition theorem

If no common eigenvalues between any two blocks on the diagonal,
then corresponding off-diagonal blocks can be eliminated by changed
choice of the complementing spaces. Simplifies picture further

|
1
i
|
|
1
I
|
i 8r5
|
L.
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What does the decomposition theorem say when y = 62? What block
is then missing?
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Trailer 4 after coordinate change

0, — 1 []0 o850 0y 1
65 | =12 -2 0 65 |+ |0|u
0, — 65 0 0 —1||6;—6, 0
02
y:[1 0 0} 05
01 — 0

controllable and observable subsystem: 65
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Zeros and state feedback

Remember: State-feedback does not change zeros.
Choose state feedback L that gives a pole in .

A now becomes non-observable

[A—BL—)\I]
:1?020

If the mode xge

C

then actually \ was a zero to the system:
A—)X B To| 0
C 0 U -
Corresponds to cancellation of the factor s — A in

G(s)=C(sI — A+ BL)"'BlI,
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Bonus: Series Connection SISO

Given two systems n;(s)/d;(s) = ¢;(sI — A;)~tb;, i=1,2

Then the series connection —Z;gzg le((i)) is

@ uncontrollable <= there is A so n1(A) = da(\) =0
@ unobservable <= there is z so na(A) = d1(A) =0

Proof:
M — Ay 0 by

<
Controllable, check when rank Ex——m /i [i] = n
M — Ay 0
Observable, check when rank —bye; AN — Ao <n
0 Co
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Cancellation in series connections

Example
s+3 s-—1

. U
s=1 5120
Loss of controllability of an unstable mode. Bad.

Y(s) =

Example
-1
Y(s):s S+3U(s)

s+ 2 -
Loss of observability of an unstable mode. Also bad.
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@ Controllability - criteria
@ Observability - criteria
@ Kalman’s decomposition

@ Cancelled dynamics <=> lack of controllability or observability
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