Last week

- State Space Realizations (pp 139-150)
- G(s), denominator and numerator, poles and zeros
- Change of coordinates, diagonal and controllable form
- State-feedback
- Observers
- Feedback from estimated states
- Integral action by disturbance model

Lecture 5

- Controllability Existence of control signal
 - Which state directions can be controlled ?
- Observability Determine state
 - Which state directions can not be seen?
- Kalman's decomposition theorem
- Cancelled dynamics <=> lack of controllability or observability

Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

- any state x_0 can be made an equilibrium
- any state trajectory x(t) can be obtained
- any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the following

Controllability

The state equation

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0$$

is called *controllable* if for any x_0 and T > 0, there exists u(t) such that x(T) = 0 ("Controllable to origin")

Question: Is this equivalent to the following definition:

"for $x_0 = 0$ and any x_1 and T > 0, there exists u(t) such that $x(T) = x_1$ " ("Controllable from origin")

The audience is thinking!

Hint:
$$x(T) = e^{AT}x_0 + \int_0^T e^{A(T-t)}Bu(t)dt$$

Controllability Gramian

The matrix

$$W(T) = \int_0^T e^{-At} B B^T e^{-A^T t} dt$$

is called the controllability Gramian.

Note that it is positive semidefinite, $W(T) \ge 0$

The main controllability result is the following

Theorem Controllability Test

The following conditions are equivalent:

- (i) The system $\dot{x}(t) = Ax(t) + Bu(t)$ is controllable.
- (ii) rank $[B \ AB \ A^2B \ \dots \ A^{n-1}B] = n.$
- (iii) W(T) is invertible for any T > 0
- (iv) For any $\lambda \in \mathbf{C}$ we have rank $[A \lambda I \ B] = n$

We will prove $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)$

The condition (iv), not proved here, is called the PBH test (Popov-Belevitch-Hautus).

Analysing controllability

The system is by definition controllable iff we for any x_0 and T can find control signal $u(t), t \in [0, T]$ that solves (see hint some slides above)

$$-x_0 = \int_0^T e^{-At} Bu(t) dt \tag{(\star)}$$

Cayley-Hamilton's theorem (google it) says that A^k for $k \ge n$ can be written as a linear combination of $I, A, A^2, \ldots A^{n-1}$, so

$$e^{-At} = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} A^k = \sum_{k=0}^{n-1} f_k(t) A^k$$
, (for some $f_k(t)$).

Therefore the condition (*) can be written

$$-x_0 = [B \ AB \ A^2B \ \dots \ A^{n-1}B]F(u), \tag{**}$$

for some vector F(u) with elements $F_k(u) = \int_0^T f_k(t)u(t)dt$

Proof of $(i) \Rightarrow (ii)$

Proof by contradiction: Assume (ii) does not hold, i.e. the controllability matrix does not have full rank.

This means there is a vector, lets call it $-x_0$, that is not in the column span of

$$[B AB A^2B \dots A^{n-1}B]$$

This contradicts (**), so (i) does not hold.

Proof of $(ii) \Rightarrow (iii)$

Assume (iii) does not hold. Then there is a $p \neq 0$ so W(T)p = 0.

$$0 = p^T W(T) p = \int_0^T \left(p^T e^{-At} B \right) \left(B^T e^{-A^T t} p \right) dt$$

Therefore

$$p^T e^{-At} B = 0, \forall t.$$

Derivating this k times and setting t = 0 gives $p^T A^k B = 0$. Hence we have

$$p^T[B AB A^2B \dots A^{n-1}B] = 0.$$

Therefore (ii) does not hold.

$(iii) \Rightarrow (i)$ Explicit construction of u(t)

If W(T) is invertible, then for any initial state x_0 , the control signal

$$u(t) = -B^T e^{-A^T t} (W(T))^{-1} x_0$$

gives x(T) = 0 (check that (*) some slides before is satisfied!). Hence the system is controllable.

Another interpretation of W(T)

One can prove (using techniques from next lecture) that the minimal (squared) control energy, defined by $||u||^2 := \int_0^T |u|^2 dt$, needed to move from $x(0) = x_0$ to x(T) = 0 equals

 $x_0^T (W(T))^{-1} x_0$

Gives nice formula for which state directions are costly to control.

W(T) large in some direction means easy to control in that direction

Which trailer is controllable?

Observability

The system

$$\begin{cases} \frac{dx}{dt} = Ax, \quad x(0) = x_0\\ y = Cx \end{cases}$$

is called observable if x_0 can be uniquely determined from $y_{[0,T]}$ (for any $T>0{\rm)}$

This is the same as saying that the only x_0 for which y(t) = 0 for all t is the trival case $x_0 = 0$

WHY ? The audience is thinking!

Which trailer is observable?

Theorem - Observability Criteria

The following are equivalent

(i) The system $\dot{x} = Ax$, y = Cx is observable (ii) $\operatorname{rank} \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} = n$ (iii) $\widetilde{W}(T)$ is invertible for any T > 0(iv) For any $\lambda \in \mathbf{C}$ we have $\operatorname{rank} \begin{pmatrix} A - \lambda I \\ C \end{pmatrix} = n$

Here the observability Gramian W(T) is defined as

$$\widetilde{W}(T) = \int_0^T e^{A^T t} C^T C e^{At} dt$$

Proof that (i) ⇔ (ii)

If (i) does not hold, then there is a quiet state $x_0 \neq 0$ so that

$$y(t) = Ce^{At}x_0 = 0, \quad \forall t$$

Derivating this k times and setting t = 0 we get $CA^k x_0 = 0$. This shows (ii) doesn't hold.

On the other hand, if (ii) does not hold then a nonzero x_0 can be found so $CA^k x_0 = 0$ for k = 0, ..., n - 1. By Cayley-Hamilton this means $CA^k x_0 = 0$ also for $k \ge n$, so by power expansion of e^{At}

$$y(t) = Ce^{At}x_0 = 0, \quad \forall t,$$

which says that (i) does not hold.

Proof that (ii) \Leftrightarrow (iii)

This follows easily by substituting (A,B) with (A^T,C^T) in (ii) and (iii) in the controllability theorem earlier

This illustrates a so called **duality** between the two theorems

Bonus Proof of (iii) \Rightarrow (i)

Maybe you didn't like the earlier proof of (ii) \Rightarrow (i) that used derivation of y(t). It is hard to implement in practice. If there e.g. is measurement noise on y(t) we would like a better way of determining x_0 .

The dual result of the construction of the energy-optimal u(t) in the controllability theorem is the following calculation:

Since $y(t) = Ce^{At}x_0$ we have that

$$\int_0^T e^{A^T t} C^T y(t) dt = \widetilde{W}(T) x_0$$

When $\widetilde{W}(t)$ is invertible we can hence find x_0 by

$$x_0 = (\widetilde{W}(T))^{-1} \int_0^T e^{A^T t} C^T y(t) dt.$$

This way of determining x_0 is actually optimally robust against measurement noise, in a sense described in Lecture 6

Controllability – state transformation

Theorem:

If the system is noncontrollable, say rank(C) = q < n, then there is a state transformation x = Vz so that in the new state coordinates

$$AV = V \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{pmatrix}$$
 and $B = V \begin{pmatrix} \tilde{B}_1 \\ 0 \end{pmatrix}$,

 $(ilde{A}_{11}, ilde{B}_1)$ controllable subsystem, q imes q

Observability – state transformation

Theorem:

If the system is non-observable, say rank(O) = q < n, then there is a state transformation so that in the new state coordinates

$$AV = V \begin{pmatrix} A_{11} & 0\\ \tilde{A}_{21} & \tilde{A}_{22} \end{pmatrix}$$
 och $CV = \begin{pmatrix} \tilde{C}_1 & 0 \end{pmatrix}$,

 $(\tilde{A}_{11},\tilde{C}_1)$ observable subsystem, q imes q

With a state transformation that splits the controllable subspace (and its complement) into nonobservable subspace and complement we get the system on a nice form

$$\frac{dx}{dt} = \begin{pmatrix} A_{11} & 0 & A_{13} & 0 \\ A_{21} & A_{22} & A_{23} & A_{24} \\ 0 & 0 & A_{33} & 0 \\ 0 & 0 & A_{43} & A_{44} \end{pmatrix} x + \begin{pmatrix} B_1 \\ B_2 \\ 0 \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} C_1 & 0 & C_2 & 0 \end{pmatrix} x$$

$$G(s) = C_1(sI - A_{11})^{-1}B_1$$

Illustrates what subparts of the system that influences the input-output behavior

Kalman's decomposition theorem

The audience if thinking: What blocks in this figure corresponds to parts 1,2,3,4 on the previous slide?

Kalman's decomposition theorem

If no common eigenvalues between any two blocks on the diagonal, then corresponding off-diagonal blocks can be eliminated by changed choice of the complementing spaces. Simplifies picture further

What does the decomposition theorem say when $y = \theta_2$? What block is then missing?

Trailer 4 after coordinate change

$$\begin{bmatrix} \dot{\theta}_2\\ \dot{\theta}_3\\ \dot{\theta}_1 - \dot{\theta}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0\\ 2 & -2 & 0\\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \theta_2\\ \theta_3\\ \theta_1 - \theta_2 \end{bmatrix} + \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta_2\\ \theta_3\\ \theta_1 - \theta_2 \end{bmatrix}$$

controllable and observable subsystem: θ_2

Zeros and state feedback

Remember: State-feedback does not change zeros. Choose state feedback L that gives a pole in λ . If the mode $x_0 e^{\lambda t}$ now becomes non-observable

$$\begin{pmatrix} A - BL - \lambda I \\ C \end{pmatrix} x_0 = 0$$

then actually λ was a zero to the system:

$$\begin{pmatrix} A - \lambda I & B \\ C & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ u_0 \end{pmatrix} = 0$$

Corresponds to cancellation of the factor $s - \lambda$ in

$$G(s) = C(sI - A + BL)^{-1}Bl_r$$

Bonus: Series Connection SISO

Given two systems $n_i(s)/d_i(s) = c_i(sI - A_i)^{-1}b_i$, i = 1, 2Then the series connection $\frac{n_2(s)}{d_2(s)}\frac{n_1(s)}{d_1(s)}$ is

- uncontrollable \iff there is λ so $n_1(\lambda) = d_2(\lambda) = 0$
- unobservable \iff there is z so $n_2(\lambda) = d_1(\lambda) = 0$

Proof:

Controllable, check when rank
$$\begin{bmatrix} \lambda I - A_1 & 0 & b_1 \\ -b_2 c_1 & \lambda I - A_2 & 0 \end{bmatrix} \le n$$

Observable, check when rank
$$\begin{bmatrix} \lambda I - A_1 & 0 \\ -b_2 c_1 & \lambda I - A_2 \\ 0 & c_2 \end{bmatrix} \le n$$

Cancellation in series connections

Example

$$Y(s) = \frac{s+3}{s-1} \cdot \frac{s-1}{s+2} U(s)$$

Loss of controllability of an unstable mode. Bad.

Example

$$Y(s) = \frac{s-1}{s+2} \cdot \frac{s+3}{s-1} U(s)$$

Loss of observability of an unstable mode. Also bad.

Summary

- Controllability criteria
- Observability criteria
- Kalman's decomposition
- Cancelled dynamics <=> lack of controllability or observability