
Last week

State Space Realizations (pp 139-150)

G(s), denominator and numerator, poles and zeros

Change of coordinates, diagonal and controllable form

State-feedback

Observers

Feedback from estimated states

Integral action by disturbance model
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Lecture 5

Controllability – Existence of control signal

Which state directions can be controlled ?

Observability – Determine state

Which state directions can not be seen?

Kalman’s decomposition theorem

Cancelled dynamics <=> lack of controllability or observability
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Controllability

How should controllability be defined ?

Some (not used) alternatives:

By proper choice of control signal u

any state x0 can be made an equilibrium

any state trajectory x(t) can be obtained

any output trajectory y(t) can be obtained

The most fruitful definition has instead turned out to be the following
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Controllability

The state equation

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

is called controllable if for any x0 and T > 0, there exists u(t) such

that x(T ) = 0 (“Controllable to origin”)

Question: Is this equivalent to the following definition:

“for x0 = 0 and any x1 and T > 0, there exists u(t) such that

x(T ) = x1” (“Controllable from origin”)

The audience is thinking!

Hint: x(T ) = eAT x0 +
∫ T

0 eA(T −t)Bu(t)dt
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Controllability Gramian

The matrix

W (T ) =

∫ T

0
e−AtBBT e−AT tdt

is called the controllability Gramian.

Note that it is positive semidefinite, W (T ) ≥ 0

The main controllability result is the following
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Theorem Controllability Test

The following conditions are equivalent:

(i) The system ẋ(t) = Ax(t) + Bu(t) is controllable.

(ii) rank [B AB A2B . . . An−1B] = n.

(iii) W (T ) is invertible for any T > 0

(iv) For any λ ∈ C we have rank[A − λI B] = n

We will prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i)

The condition (iv), not proved here, is called the PBH test

(Popov-Belevitch-Hautus).
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Analysing controllability

The system is by definition controllable iff we for any x0 and T can find

control signal u(t), t ∈ [0, T ] that solves (see hint some slides above)

−x0 =

∫ T

0
e−AtBu(t)dt (⋆)

Cayley-Hamilton’s theorem (google it) says that Ak for k ≥ n can be

written as a linear combination of I, A, A2, . . . An−1, so

e−At =
∞∑

k=0

(−t)k

k!
Ak =

n−1∑

k=0

fk(t)Ak, (for some fk(t)).

Therefore the condition (⋆) can be written

−x0 = [B AB A2B . . . An−1B]F (u), (⋆⋆)

for some vector F (u) with elements Fk(u) =
∫ T

0 fk(t)u(t)dt
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Proof of (i) ⇒ (ii)

Proof by contradiction: Assume (ii) does not hold, i.e. the controllability

matrix does not have full rank.

This means there is a vector, lets call it −x0, that is not in the column

span of

[B AB A2B . . . An−1B]

This contradicts (⋆⋆), so (i) does not hold.
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Proof of (ii) ⇒ (iii)

Assume (iii) does not hold. Then there is a p 6= 0 so W (T )p = 0.

0 = pT W (T )p =

∫ T

0

(
pT e−AtB

) (
BT e−AT tp

)
dt

Therefore

pT e−AtB = 0, ∀t.

Derivating this k times and setting t = 0 gives pT AkB = 0.

Hence we have

pT [B AB A2B . . . An−1B] = 0.

Therefore (ii) does not hold.
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(iii) ⇒ (i) Explicit construction of u(t)

If W (T ) is invertible, then for any initial state x0, the control signal

u(t) = −BT e−AT t(W (T ))−1x0

gives x(T ) = 0 (check that (⋆) some slides before is satisfied!).

Hence the system is controllable.
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Another interpretation of W (T )

One can prove (using techniques from next lecture) that the minimal

(squared) control energy, defined by ‖u‖2 :=
∫ T

0 |u|2dt, needed to

move from x(0) = x0 to x(T ) = 0 equals

xT
0 (W (T ))−1x0

Gives nice formula for which state directions are costly to control.

W (T ) large in some direction means easy to control in that direction
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Which trailer is controllable?

u

θ1

θ2

u

θ1

θ2

u

θ1

θ2
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Trailer 1

u

θ1

θ2

[
θ̇1

θ̇2

]
=

[
−2 0
1 −1

] [
θ1

θ2

]
+

[
2
0

]
u
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Trailer 2

u

θ1

θ2

[
θ̇1

θ̇2

]
=

[
−2 0
0 −1

] [
θ1

θ2

]
+

[
2
1

]
u
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Trailer 3

u

θ1

θ2

[
θ̇1

θ̇2

]
=

[
−1 0
0 −1

] [
θ1

θ2

]
+

[
1
1

]
u
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Observability

The system 



dx

dt
= Ax, x(0) = x0

y = Cx

is called observable if x0 can be uniquely determined from y[0,T ] (for

any T > 0)

This is the same as saying that the only x0 for which y(t) = 0 for all t
is the trival case x0 = 0

WHY ? The audience is thinking!
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Which trailer is observable?

u

θ1

θ2

u

θ1

θ2

u

θ1

θ2

Which trailer is observable if y = θ1? If y = θ2?
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Theorem - Observability Criteria

The following are equivalent

(i) The system ẋ = Ax, y = Cx is observable

(ii) rank




C
CA

...

CAn−1




= n

(iii) W̃ (T ) is invertible for any T > 0

(iv) For any λ ∈ C we have rank




A − λI
C


 = n

Here the observability Gramian W̃ (T ) is defined as

W̃ (T ) =

∫ T

0
eAT tCT CeAtdt
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Proof that (i) ⇔ (ii)

If (i) does not hold, then there is a quiet state x0 6= 0 so that

y(t) = CeAtx0 = 0, ∀t

Derivating this k times and setting t = 0 we get CAkx0 = 0. This

shows (ii) doesn’t hold.

On the other hand, if (ii) does not hold then a nonzero x0 can be found

so CAkx0 = 0 for k = 0, . . . n − 1. By Cayley-Hamilton this means

CAkx0 = 0 also for k ≥ n, so by power expansion of eAt

y(t) = CeAtx0 = 0, ∀t,

which says that (i) does not hold.
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Proof that (ii) ⇔ (iii)

This follows easily by substituting (A, B) with (AT , CT ) in (ii) and (iii)

in the controllability theorem earlier

This illustrates a so called duality between the two theorems
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Bonus Proof of (iii)⇒ (i)

Maybe you didn’t like the earlier proof of (ii) ⇒ (i) that used derivation

of y(t). It is hard to implement in practice. If there e.g. is measurement

noise on y(t) we would like a better way of determining x0.

The dual result of the construction of the energy-optimal u(t) in the

controllability theorem is the following calculation:

Since y(t) = CeAtx0 we have that

∫ T

0
eAT tCT y(t)dt = W̃ (T )x0

When W̃ (t) is invertible we can hence find x0 by

x0 = (W̃ (T ))−1
∫ T

0
eAT tCT y(t)dt.

This way of determining x0 is actually optimally robust against

measurement noise, in a sense described in Lecture 6
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Trailer 1

u

θ1

θ2

[
θ̇1

θ̇2

]
=

[
−2 0
1 −1

] [
θ1

θ2

]
y =

[
1 0

] [
θ1

θ2

]

y =
[
0 1

] [
θ1

θ2

]
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Trailer 2

u

θ1

θ2

[
θ̇1

θ̇2

]
=

[
−2 0
0 −1

] [
θ1

θ2

]
y =

[
1 0

] [
θ1

θ2

]

y =
[
0 1

] [
θ1

θ2

]
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Controllability – state transformation

Theorem:

If the system is noncontrollable, say rank(C) = q < n, then there is a

state transformation x = V z so that in the new state coordinates

AV = V




Ã11 Ã12

0 Ã22


 and B = V




B̃1

0


,

(Ã11, B̃1) controllable subsystem, q × q
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Observability – state transformation

Theorem:

If the system is non-observable, say rank(O) = q < n, then there is a

state transformation so that in the new state coordinates

AV = V




Ã11 0

Ã21 Ã22


 och CV =


C̃1 0


,

(Ã11, C̃1) observable subsystem, q × q
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Kalman’s decomposition theorem

With a state transformation that splits the controllable subspace (and

its complement) into nonobservable subspace and complement we get

the system on a nice form

dx

dt
=




A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44




x +




B1

B2

0
0




u

y =

C1 0 C2 0


 x

G(s) = C1(sI − A11)−1B1

Illustrates what subparts of the system that influences the input-output

behavior
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Kalman’s decomposition theorem

The audience if thinking: What blocks in this figure corresponds to

parts 1,2,3,4 on the previous slide?
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Kalman’s decomposition theorem

If no common eigenvalues between any two blocks on the diagonal,

then corresponding off-diagonal blocks can be eliminated by changed

choice of the complementing spaces. Simplifies picture further
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Trailer 4

replacements

u

θ1

θ2

θ3




θ̇1

θ̇2

θ̇3


 =




−1 0 0
0 −1 0
0 2 −2







θ1

θ2

θ3


 +




1
1
0


 u, y =

[
0 1 0

]



θ1

θ2

θ3




What does the decomposition theorem say when y = θ2? What block

is then missing?
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Trailer 4 after coordinate change




θ̇2

θ̇3

θ̇1 − θ̇2


 =




−1 0 0
2 −2 0
0 0 −1







θ2

θ3

θ1 − θ2


 +




1
0
0


 u

y =
[
1 0 0

]



θ2

θ3

θ1 − θ2




controllable and observable subsystem: θ2
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Zeros and state feedback

Remember: State-feedback does not change zeros.

Choose state feedback L that gives a pole in λ.

If the mode x0eλt now becomes non-observable




A − BL − λI
C


 x0 = 0

then actually λ was a zero to the system:




A − λI B
C 0







x0

u0


 = 0

Corresponds to cancellation of the factor s − λ in

G(s) = C(sI − A + BL)−1Blr
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Bonus: Series Connection SISO

Given two systems ni(s)/di(s) = ci(sI − Ai)
−1bi, i = 1, 2

Then the series connection
n2(s)
d2(s)

n1(s)
d1(s) is

uncontrollable ⇐⇒ there is λ so n1(λ) = d2(λ) = 0

unobservable ⇐⇒ there is z so n2(λ) = d1(λ) = 0

Proof:

Controllable, check when rank

[
λI − A1 0 b1

−b2c1 λI − A2 0

]
≤ n

Observable, check when rank




λI − A1 0
−b2c1 λI − A2

0 c2


 ≤ n
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Cancellation in series connections

Example

Y (s) =
s + 3

s − 1
·

s − 1

s + 2
U(s)

Loss of controllability of an unstable mode. Bad.

Example

Y (s) =
s − 1

s + 2
·

s + 3

s − 1
U(s)

Loss of observability of an unstable mode. Also bad.
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Summary

Controllability - criteria

Observability - criteria

Kalman’s decomposition

Cancelled dynamics <=> lack of controllability or observability
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