
Solutions to the exam in Real-Time Systems 150113

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1.

a. To verify that the system is observable we compute the observability matrix
as

Wo =
[C

CΦ

]
=

[0 1
2

1
2 −1

2

]
which has full rank, since det{Wo} = 0− 1/4 = −1/4. Hence, the system is
observable.

b. Letting K =
[k1

k2

]
the gain of the deadbeat observer, we compute

Φ − K C =
[−1 0

1 −1

]
−

[k1

k2

]
[0 1

2] =

=
[−1 0

1 −1

]
−

[
0 k1

2

0 k2
2

]
=

[
−1 − k1

2

1 −1− k2
2

]
.

The characteristic polynomial can thus be computed as

det{zI−Φ+K C} = (z+ 1)
(

z+ 1+ k2
2

)
+ k1

2 = z2+
(

2+ k2
2

)
z+ k1

2 +
k2
2 +1

The desired characteristic equation is

z2 + p1z+ p2 = 0

with p1 = p2 = 0. Therefore, we can find the observer gain as⎧⎪⎪⎨
⎪⎪⎩

2+ k2
2 = 0

k1
2 + k2

2 + 1 = 0
�

{
k1 = 2

k2 = −4

The resulting observer is thus

x̂(k+ 1) =
[−1 −1

1 1

]
x̂(k) +

[2
0

]
u(k) +

[2
−4

]
y(k).

2. First of all we need to represent x and y in Q5.2-format

• x= 12.4 � X = round
(
12.4 ⋅ 22) = round (49.6) = 50;

• y= 0.4 � X = round
(
0.4 ⋅ 22) = round (1.6) = 2;

Then we can compute the value Z = (X ⋅ 2n)/Y

Z = (50 ⋅ 22)/2 = 200/2 = 100

and the result z can be obtained as

z = 100/22 = 25

When implementing the division using code it is necessary to use a 16 bit
int to represent the intermediate value since 200 does not fit in an 8-bit
signed int.

1

3. First note that the continuous-time system is unstable, so we obviously want
the discretized system to also have this feature.
The transfer function of the system is given by:

G(s) = 1
s− 1

by substituting s = q−1
qh where q is the forward-shift operator gives the

discretized system H(z) with backward Euler.

H(z) = qh
q− 1− qh = [h = 3] = 3q

−1− 2q =
−3/2q
q+ 1/2

Hence, the discretized system is stable with an oscillating mode caused by
the pole on the negative real axis, i.e., the behaviour is not at all the same
as for the continuous-time system.

4.

p = 0.8
G1 = 1/z → GC

G2 = 1/(z+ p) → GD

G3 = z/(z+ p) → GA

G4 = 1/(z− p) → GF

G5 = z/(z2 − p) → GE

G6 = 1/(z2 + p) → GB

G1C This is a simple unit time delay.
G2D GD has a pole on the negative real axis and should thus have an

oscillating pulse response. The pole excess is one, so a unit delay is
expected. This matches only G2

G3A GA is like GD with an additional zero in z = 0. The pole excess is
therefore zero and an oscillating pulse response without time delay is
expected, which corresponds to G3.

G4F GF has a pole on the positive real axis and a pole excess of one. A
unit delay is therefore expected and apart from the initial injection of
energy, a monotonically decreasing pulse response. This corresponds
to G4.

G5E GE has a double pole on the positive real axis and a pole excess of one.
The pulse response should exhibit a unit time delay and be closely
related to G4F . The switch from z to z2 in the denominator causes the
output at every second time instant to be zero (no z1 term present).

G6B GB has a pole excess of two and is therefore the only transfer function
which exhibits a pulse response with two samples time delay.

p The constant is common to almost all transfer functions, and is most
clearly visible in response G4, where the first decrease from 1 to 0.8
matches GF = 1

z−0.8

5.

2

a. The ordinary RMS scheduling condition gives that

2
4 +

1
3 +

0.5
6 = 0.92 > 3(21/3 − 1) = 0.78

Hence, using this we cannot tell whether the task set is schedulable or not.
Using the hyperbolic condition leads to the same conclusion since

(24 + 1)(13 + 1)(0.5
6 + 1) = 2.17 > 2

Finally, using response time analysis we have that

R0
B = 0, R1

B = CB = 1 ≤ DB = 4

R0
A = 0, R1

A = CA = 2,

R2
A = CA +

⌈
2

TB

⌉
CB = 3,

R3
A = CA +

⌈
3

TB

⌉
CB = 3 ≤ DA = 4

R0
C = 0, R1

C = CC = 0.5,

R2
C = CC +

⌈
0.5
TA

⌉
CA +

⌈
0.5
TB

⌉
CB = CC + CA + CB = 3.5

R3
C = CC +

⌈
3.5
TA

⌉
CA +

⌈
3.5
TB

⌉
CB = CC + CA + 2CB = 4.5

R4
C = CC +

⌈
4.5
TA

⌉
CA +

⌈
4.5
TB

⌉
CB = CC + 2CA + 2CB = 6.5 > DC = 6

Hence, the task set is not schedulable.

b. Under EDF the schedulability condition is

2
4 +

1
3 +

0.5
6 = 0.92 < 1

Hence, the task set is schedulable under EDF scheduling.

c. The schedule is shown in Fig. 1.

d. Since the response time analysis for fixed priority scheduling does not apply
to EDF, the response times are obtained from the drawn schedule.
The response time is the difference between the job release time and the job
finishing time. The first job of Task A is released at t = 0 and finishes at
t = 3. Hence, the response time is 3. The second job of Task A is released at
t = 4 and finishes at t = 6.5. Hence, the response time is 2.5. The third job
of Task A is released at t = 8 and finishes at t = 11. Hence, the response
time is 3. Hence the worst-case response time for Task A is 3.
The first job of Task B is released at t = 0 and finishes at t = 1. Hence,
the response time is 1. The second job of Task B is released at t = 3 and
finishes at t = 4. Hence, the response time is 1. The third job of Task B is
released at t = 6 and finishes at t = 7.5. Hence, the response time is 1.5.

3

Figure 1 EDF schedule

The fourth job of Task B is released at t = 9 and finishes at t = 10. Hence,
the response time is 1. Hence the worst-case response time for Task B is
1.5.
The first job of Task C is released at t = 0 and finishes at t = 4.5. Hence,
the response time is 4.5. The second job of Task B is released at t = 6
and finishes at t = 8. Hence, the response time is 2. Hence the worst-case
response time for Task C is 4.5.

6.

a. The closed loop pulse transfer function is given by:

Hcl(z) = K
z2 + 0.4z+ K

so the roots of the denominator polynomial are located in

λ1,2 = −0.2±
√

0.04− K .

For 0 < K ≤ 0.04 the poles are real-valued and within the unit circle and
for K > 0.04 the poles become complex:

λ1,2 = −0.2± i
√

K − 0.04.

The poles will cross the unit circle when �λ i� =
√

0.22 + (K − 0.04) = 1
which happens when K = 1.

b. Studying the stationary equation

y+ 0.4y = 0.5(1− y)
gives y = 5/19, hence the stationary error is 14/19.

c. The pulse-transfer function of the PI controller is given by the sum of the
pulse-transfer functions of the P and I part:

4

P(z) = K E(z), I(k+ 1) = I(k) + K h
Ti

e(k), � I(z) = K h
Ti(z− 1)E(z).

Thus the controller transfer function C(z) is given by:

C(z) = K + K h
Ti(z− 1) =

Ti K (z− 1) + K h
Ti(z− 1) .

The closed loop transfer function with a PI controller is given by:

Hcl(z) =
Ti K (z−1)+K h

Ti(z−1)(z2+0.4z)
1+ Ti K (z−1)+K h

Ti(z−1)(z2+0.4z)
= Ti K (z− 1) + K h

Ti(z− 1)(z2 + 0.4z) + Ti K (z− 1) + K h

Given that Hcl(z) is asymptotically stable, the static gain can be computed
by inserting z = 1, and clearly it is 1 since K h

K h = 1.

7.

a.

Ga(s) = 1
s+ 1

G�(s) = 1− 1
s+ 1 =

s
s+ 1

b. From Table 3 in IFAC Professional Brief it immediately follow that

Ha(z) = 1− e−h

z− e−h

H�(z) = 1− 1− e−h

z− e−h =
z− 1

z− e−h

c. To implement the filters Ha and H� in code, they must first be transformed
to a difference equation

yf (k) = Ha(z)ya(k) + H�(z)y�(k) =

= yf (k) =
1− e−h

z− e−h ya(k) + z− 1
z− e−h y�(k)

(z− e−h)yf (k) = (1− e−h)ya(k) + (z− 1)y�(k)
yf (k+ 1) − e−hyf (k) = (1− e−h)ya(k) + y�(k+ 1) − y�(k)

The equation for the filtered output is then shifted back in time one sample
to obtain

yf (k) = e−hyf (k− 1) + (1− e−h)ya(k− 1) + y�(k) − y�(k− 1) (1)

The code to implement the filter is given below

5

double compFilt (double ya , double yg , double h){
/∗ Declare and i n i t i a l i z e var i ab l es ∗/
static double yf = 0 ; // F i l t e r s t a t e
static double ygs = 0 ; // Gyroscope s t a t e
static double yas = 0 ; // Old acce l erometer value
double e = Math . exp(−h) ; // F i l t e r constant
double em1 = 1 − e ; // F i l t e r constant

/∗ Perform ca l cu l a t i on ∗/
yf = e∗ yf + em1∗yas + yg − ygs ; // Di f f e r ence equation
ygs = yg ; // Update s t a t e
yas = ya ; // Update s t a t e

return yf ;
}
In a real good solution the filter constants should be pre-calculated.

8.

a. Using the formula

ω = �(ω 1 +ω N) mod ω s −ω N �
for the first frequency ω 1 = π , ω N = π and ω s = 2π , gives ω = π . For the
second frequency ω 2 = 3π /2 the aliased frequency is π /2.

b. The first solution will work since the wanted signal will not be aliased by
the high sample rate, however the disturbance will be aliased to 490. It will
then be attenuated by the digital filter.
The second solution will not work since the sampling rate at 250 will alias
the frequencies wanted from 175-250 Hz to 0 - 175 Hz.
However, in order for first solution to be a really good solution it should
be complemented with an analog low-pass filter designed for the sampling
frequency 1000 Hz.

9.

a. Without pre-calculations the code would look like

Read y and uc

u f f = −Lmxm + lruc

u = L(xm − x̂) + u f f

Output u
x̂ = Φ x̂ + Γu+ K (y− Cx̂)
xm = Φxm + Γu f f

6

Using pre-calculations the following is achieved:

Read y and uc

u f f = u f f + lruc

u = u+ u f f

Output u
x̂ = Φ x̂ + Γu+ K (y− Cx̂)
xm = Φxm + Γu f f

u f f = −Lmxm

u = L(xm − x̂)

b. Since the observer now has a direct term it must be placed in Calculate-
Output part of the code, i.e.,

Read y and uc

x̂ = (I − K C)(Φ x̂ + Γu) + K y
u f f = −Lmxm + lruc

u = L(xm − x̂) + u f f

Output u
xm = Φxm + Γu f f

However, a large part of the observer computations can be pre-calculated
in UpdateState, as shown below.

Read y and uc

x̂ = x̂ + K y
u f f = u f f + lruc

u = L(xm − x̂) + u f f

Output u
x̂ = (I − K C)(Φ x̂ + Γu)
xm = Φxm + Γu f f

u f f = −Lmxm

Note that we cannot precalculate parts of u any longer.

10.

a. The solution is

public class Writer extends Thread {

MultiStepSemaphore sem;

public Writer(MultiStepSemaphore s) {

7

sem = s;
}

public void run() {
while (true) {
sem.take(3);

// access critical section
sem.give(3);

}
}

}

public class Reader extends Thread {

MultiStepSemaphore sem;

public Reader(MultiStepSemaphore s) {
sem = s;

}

public void run() {
while (true) {
sem.take();

// access critical section
sem.give();

}
}

}

public class Main {

public static void main(String[] args) {

MultiStepSemaphore s;
s = new MultiStepSemaphore(3);
Writer w;
Reader r;
for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start();

}
for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}
}

b. The class ReadersWritersGuard is given below (with all exception handling
excluded):

public class ReadersWritersGuard {

int maxWriters = 1;
int maxReader = 1;

8

// the number of writer processes inside the section
int writersCounter = 0;

// the number of reader processes inside the section
int readersCounter = 0;

public ReadersWritersGuard() {}

public ReadersWritersGuard(int maxW, int maxR) {
this();
maxWriters = maxW;
maxReaders = maxR;

}

public synchronized void writersTake() {
while ((writersCounter == maxWriters) | (readersCounter > 0)) {

wait();
}
writersCounter++;

}

public synchronized void readersTake() {
while ((readersCounter == maxReaders) | (writersCounter > 0)) {

wait();
}
readersCounter++;

}

public synchronized void writersGive() {
writersCounter--;
notifyAll();

}

public synchronized void readersGive() {
readersCounter--;
notifyAll();

}
}

It should be used as

public class Writer extends Thread {

ReadersWritersGuard sem;

public Writer(ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.writersTake();

// access critical section
sem.writersGive();

}
}

9

}

public class Reader extends Thread {

ReadersWritersGuard sem;

public Reader(ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.readersTake();

// access critical section
sem.readersGive();

}
}

}

public class Main {

public static void main(String[] args) {

ReadersWritersGuard s;
s = new ReadersWritersGuard(2,3);
Writer w;
Reader r;
for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start();

}
for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}
}

10

