
Solutions to the exam in Real-Time Systems 140107

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1.

a. Selecting the state variables as [y(t) ẏ(t) ÿ(t)]T gives the state space repre-
sentation

A =
⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ B =

⎡
⎣

0
0
1

⎤
⎦ C = [1 0 0]

Since A3 = 0 it is convenient to compute Φ = eAh using a series expansion,
i.e.,

Φ = eAh = I + Ah+ A2h2/2 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦+

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ h+

⎡
⎣

0 0 1
0 0 0
0 0 0

⎤
⎦ h2/2

=
⎡
⎣

1 h h2/2
0 1 h
0 0 1

⎤
⎦ =

⎡
⎣

1 1 1/2
0 1 1
0 0 1

⎤
⎦

Γ =
∫ h

0
eAsBds =

∫ h

0

⎡
⎣

s2/2
s
1

⎤
⎦ ds =

⎡
⎣

h3/6
h2/2

h

⎤
⎦ =

⎡
⎣

1/6
1/2
1

⎤
⎦

It is then straightforward to compute the pulse transfer from the expression

H(z) = C(zI − Φ)−1Γ = [1 0 0]
(z− 1)3

⎡
⎣
(z− 1)2 (z− 1) 1/2(z+ 1)

0 (z− 1)2 (z− 1)
0 0 (z− 1)2

⎤
⎦
⎡
⎣

1/6
1/2
1

⎤
⎦

= 1/6z2 + 2/3z+ 1/6
(z− 1)3

The transfer function has three poles in 1 (as could be expected since this is
what characterizes a discrete-time triple integrator) and two zeros, one in
−3.7321 and one in −0.2679. The sampling, hence, turns a continuous-time
minimum-phase system into a discrete-time non-minimum phase system
(due to the zero outside the unit circle).

2.

a. The PI-controller consists of the P-part and I-part:

P(k) = K e(k), I(k+ 1) = I(k) + (hK/Ti)e(k)
Applying the Z-transform gives

P(z) = K E(z), I(z) = hK
Ti(z− 1)E(z)

This gives the pulse transfer function H(z)

U(z) = H(z)E(z) = (K + hK
Ti(z− 1))E(z) =

K (z+ (h− Ti)/Ti)
(z− 1) E(z)

The pulse transfer function has a pole in 1 and a zero in 1− h/Ti.

1

b. private double u = 0, y = 0, r = 0; I = 0, e = 0;
private double K = ...;
private double h = ...;
private double Ti = ...;

while (1) {
y = getY();
r = getReference();

e = r-y;
u = K*e + I;

outputU(u);

I = I + (K*h/Ti)*e;

sleep();
}

3. Feedback vector L1 gives the closed-loop system matrix

Φ1 =
⎧⎪⎪⎩ 1 0

1 1

⎫⎪⎪⎭
which has two eigenvalues in 1, hence corresponding to λ C. Two eigenvalues
on the unit circle means that the system response should be unstable, which
agrees with I.
Feedback vector L2 gives the closed-loop system matrix

Φ2 =
⎧⎪⎪⎩−2 −2

1 1

⎫⎪⎪⎭
which has the eigenvalues −1 and 0, hence corresponding to λ A. An eigen-
value in −1 means that the system response should be oscillating, which
agrees with II.
Feedback vector L3 gives the closed-loop system matrix

Φ3 =
⎧⎪⎪⎩−1 −1

1 1

⎫⎪⎪⎭
which has two eigenvalues in 0, hence corresponding to λ B . All eigenvalues
in 0 implies deadbeat control, which agrees with III.

4 a. The system is sampled with fs = 50 Hz, so the Nyquist frequency is 25 Hz.
The disturbance component with a frequency of 20 Hz is below the Nyquist
frequency and thus gives a control signal disturbance at 20 Hz.
The disturbance component with a frequency of 550 Hz is aliased down to
exactly 0 Hz, where the second component of the control signal disturbance
appears. (as a constant bias!). This is given by

f1 = �(550 + 25)mod(50) − 25�
= �575 mod 50− 25� = �25− 25� = 0

2

b. The frequencies 20 – 25 Hz are within the Nyquist frequency, and are not
aliased. The frequencies 25 – 30 Hz are just outside the Nyquist frequency,
and are aliased to 20 – 25 Hz. Thus the disturbances in the control signal
will be in the range 20 – 25 Hz.

5 a. In order to guarantee that the task set is schedulable when the total number
of tasks is unknown the total CPU utilization should be less than 69%. Since
39% are reserved for the existing applications this means that the three new
tasks may use maximum 30% of the CPU. The utilization of the three tasks
is

U =
i=3∑
i=1

Ci
Ti
= 0.5

6 + 1
x +

1
12

Setting U equal to 0.3 gives x = 7.5.

b. Under EDF the schedulability bound is 1. Using the above formulae gives
x = 1.2.

c. Using the above formulae again gives x = 1.5.

d. The utilization is 0.83333 which is larger than

3(2 1
3 − 1) = 0.779.

Hence the ordinary sufficient-only schedulability test is not enough. How-
ever, the hyperbolic schedulability condition is fulfilled, i.e.,

(0.5/6+ 1)(1/1.5 + 1)(1/12 + 1) = 1.956 < 2

Hence, the task set is schedulable.
Alternatively one can calculate the response times for the tasks. The priority
assignment gives Task B the highest priority, Task A the medium priority,
and Task C the lowest priority.
Since Task B has the highest priority the response time for task B, RB , is
equal to 1. This is smaller than the deadline for task B. So far so good.

R0
A = 0, R1

A = CA = 0.5,

R2
A = CA +

⌈
0.5
TB

⌉
CB = 1.5,

R3
A = . . . = 1.5

This is also less than the deadline. For Task C

R0
C = 0, R1

C = CC = 1,

R2
C = CC +

⌈
1

TA

⌉
CA +

⌈
1

TB

⌉
CB = CC + CA + CB = 2.5

R3
C = . . . = 3.5, R4

C = . . . = 4.5, R5
C = . . . = 4.5

This, finally, is also less than the deadline. Hence, the task set is schedu-
lable.

3

6.

a. From the formula sheet it immediately follows that

H(z) = 1− e−ah

z− e−ah

b. A time delay equal to one sample is equivalent to an extra pole in the origin,
i.e.,

H(z) = 1− e−ah

z(z− e−ah)
c. Sampling the continuous-time system gives that

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)

where
Φ = e−ah

Γ0 =
∫ h−τ

0
e−as ds a = 1− e−a(h−τ)

Γ1 = e−a(h−τ)
∫ τ

0
e−as ds a = e−a(h−τ) − e−ah

The corresponding state-space model is obtained from the augmented state
[x(kh) u(kh− h)]T as

⎧⎪⎪⎩ x(kh+ h)
u(kh)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ Φ Γ1

0 0

⎫⎪⎪⎭
⎧⎪⎪⎩ x(kh)

u(kh− h)

⎫⎪⎪⎭+
⎧⎪⎪⎩ Γ0

I

⎫⎪⎪⎭u(kh)

The corresponding pulse tranfer function is given by

H(z) = Γ0z− Γ1
z(z− Φ) =

(1− e−a(h−τ))z− (e−a(h−τ) − e−ah)
z(z− e−ah)

7. The corresponding Grafcet diagram is shown in Fig. 1.

8 a. The problem is that the lock is held while waiting for user confirmation,
which means that the controller cannot execute until the parameter change
has been reviewed.

public void setParameters(PIDParameters p) {
System.out.println("Got new parameters:");
printParameters();
System.out.println("Apply these parameters? (Y/N)");
if (getUserConfirmation()) {
synchronized (this) {

this.p = (PIDParameters)p.clone();
// ... update ad and bd

}
}

}

8 b. Some additional issues and possible solutions are:

4

Figure 1 Grafcet diagram

• Problem: Parameters must be confirmed when creating PID instances.
Solution: Use a separate private method for just setting the parameters
and use that from both setParameters() and the constructor.

• Problem: The GUI freezes while waiting for user confirmation. This is
especially critical if the getUserConfirmation() also uses the GUI as
the GUI will then freeze indefinitely.
Solution: Schedule parameter update in separate threads.

• Problem: Calls to setPIDParameters() may be interleaved in the out-
put.
Solution: Use a separate lock for this.

9. A. fixX * fixY has nx fractional bits. fixZ is first shifted from nz to nx
fractional bits. Then the two terms are added and the nx fractional
bits are shifted away.

x ⋅ 2nx ⋅ y+ z ⋅ 2nz ⋅ 2nx−nz

2nx = x ⋅ y ⋅ 2nx + z ⋅ 2nx

2nx = x ⋅ y+ z

5

The calculation is correct.
B. The nx fractional bits of fixX is shifted away before they are used.

Precision is lost, and the calculation is incorrect.
C. fixX * fixY has nx fractional bits. The term is shifted down to nz

fractional bits before it is added to fixZ. The result of the addition is
then shifted down to zero fractional bits.

x⋅2nx ⋅y
2nx−nz + z ⋅ 2nz

2nz = x ⋅ y ⋅ 2nz+ z ⋅ 2nz

2nz = x ⋅ y+ z

The calculation is correct.
D. Adding a variable with zero fractional bits with a variable with non-

zero fractional bits makes no sense:
x⋅2nx ⋅y

2nx + z ⋅ 2nz

2nz = x ⋅ y
2nz + z �= x ⋅ y+ z

The calculation is incorrect.

10. a) is syntactically correct, deadlock free, live, and bounded (always 1 token
in the net).
b) is syntactically correct and bounded (at most 1 token). The net always
deadlocks when the bottom right transition fires. Not live since not deadlock
free.
c) is not syntactically correct since it has an arc between two places.
d) is syntactically correct, deadlock free, and live. After the source transi-
tion has fired once, both transitions are always enabled. Nets with source
transitions are not bounded.
e) is syntactically correct, deadlock free, and live. After firing the upper
transition, the lower place will always contain at least one token. Then it
is always possible to fire lower and then upper, thus the net is live and
deadlock free. Each such firing increases the number of tokens in the net
by one and thus it is not bounded.
f) is not syntactically correct since it has an arc between two transitions.
g) is syntactically correct and deadlock free. After firing the upper transi-
tion, that transition can never be fired again, thus the net is not live. Then
the lower transition can always be fired, thus the net is deadlock free. Do-
ing so increases the number of tokens in the net by one, thus the net is not
bounded.

11. public class CountDownLatch {

private int count;

public CountDownLatch(int count) {
this.count = count;

}

public synchronized void await() throws InterruptedException {
while (count > 0) {

6

wait();
}

}

public synchronized void countDown() {
if (count > 0) {

count--;
if (count == 0) {
notifyAll();

}
}

}

public synchronized int getCount() {
return count;

}
}

7

The inverse of an upper-triangular 3x3 matrix

If

A =
⎡
⎣

a b c
0 d e
0 0 f

⎤
⎦

then, assuming that the matrix is invertible, the inverse is given by

A−1 = 1
ad f

⎡
⎣

d f −b f (be− cd)
0 a f −ae
0 0 ad

⎤
⎦

8

