
Department of
AUTOMATIC CONTROL

Real-Time Systems
Exam May 3, 2019, hours: 8.00–13.00

Points and grades
All answers must include a clear motivation and a well-formulated answer.
Answers may be given in English or Swedish. The total number of points is 25.
The maximum number of points is specified for each subproblem.

Accepted aid
The textbooks Real-Time Control Systems and Computer Control: An Overview
- Educational Version. Standard mathematical tables and authorized “Real-Time
Systems Formula Sheet” plus the formula sheet from Reglerteknik AK. Pocket
calculator.

Results
The result of the exam will become accessible through LADOK. The solutions will
be available on WWW:
http://www.control.lth.se/course/FRTN01/

1

Solutions to the exam in Real-Time Systems 190503

These solutions are available on WWW:
http://www.control.lth.se/course/FRTN01/

1. Consider the following discrete-time system

x(k+ 1) = ax(k) + u(k)

a. For which values of a can the above system have been obtained from a ZOH-
sampling of a first-order continuous-time system? (1 p)

b. Assume that a = 0. What is the name for a system with this type of dynamics?
(1 p)

Solution

a. For a first-order continuous-time system of the form

ẋ(t) = ac x(t) + bcu(t)

the corresponding ZOH-sampled version with sampling period h is given by

x(k+ 1) = exp(ach)x(k+ 1) +
∫ h

0
exp(acs)dsbcsu(k)

From this we see that

a = exp(ach)

which can only hold when a > 0.

b. This type of system is called a deadbeat system or a pure delay system.

2. A fixed-point representation of the first-order digital filter

x(k+ 1) = 0.78x(k) − 1.23y(k)
u(k) = 0.91x(k)

with word length N = 8 and 6 fractional bits is shown below:

int8_t x = 0, y, u;

y = readInput();

u = (int8_t)(((int16_t)58*x) >> 6);

writeOutput(u);

x = (int8_t)(((int16_t)50*x - (int16_t)79*y) >> 6);

The variables y, x, and u are all represented as 8-bit signed integers (i.e. 0
fractional bits).

a. What would the consequence be if instead the following implementation was
used?

2

int8_t x = 0, y, u;

y = readInput();

u = (58*x) >> 6;

writeOutput(u);

x = (50*x - 79*y) >> 6;

(1 p)

b. What would the consequence be if instead the following implementation was
used?

int8_t x = 0, y, u;

y = readInput();

u = (int8_t)(((int16_t)58*x) >> 5);

writeOutput(u);

x = (int8_t)(((int16_t)50*x - (int16_t)79*y) >> 6);

(1 p)

Solution

a. The casts (int16_t) are needed to ensure that the multiplications are carried
out using 16-bit wordlength. Since x and y can be in the range [−128, 127],
the products (58 · x, 50 · x and 79 · y) can easily overflow if only 8-bit wordlength
is used, giving completely wrong results.

b. Here we rightshift the control signal one bit too little. The effect of this will
be that the control signal will be a factor 2 times larger than it should be.

3.

a. Consider the following task set where the standard notation is used. Assign
the priorities High, Medium and Low to the three tasks when fixed-priority
scheduling with deadline-monotonic priority assignment is used.

Task T C D
A 6 1 5
B 4 2 4
C 3 1 2

(0.5 p)

b. Decide if the task set is schedulable or not using fixed-priority scheduling
with deadline-monotonic priority assignment. (1.5 p)

c. Now we instead assume that Earliest Deadline First scheduling should be
used. Decide if the task set is schedulable or not. In order to get any points
on the problem you may only use methods and results that are part of this
course to derive the result. (2 p)

Solution

3

a. With deadline monotonic priority assignments the task with the shortest
relative deadline should have the highest priority, i.e., Task C should have
High priority, Task B Medium priority, and Task A Low priority.

b. The sufficient-only test for deadline monotonic priority assignment gives
n∑

i=1

Ci
Di
= 0.2+ 0.5+ 0.5 = 1.2 > 3(21/3 − 1) = 0.78

Hence, this does not provide any answer. Instead we have to use the exact
analysis. From this it follows that RC = 1 ≤ 2 (OK)

R0
B = 2

R1
B = 2+

⌈
2
3

⌉
1 = 3

R2
B = 2+

⌈
3
3

⌉
1 = 3

RB = 3 ≤ 4 (OK)

R0
A = 1

R1
A = 1+

⌈
1
4

⌉
2+

⌈
1
3

⌉
1 = 4

R2
A = 1+

⌈
4
4

⌉
2+

⌈
4
3

⌉
1 = 5

R3
A = 1+

⌈
5
4

⌉
2+

⌈
5
3

⌉
1 = 7

Although R A has not converged yet, we know already that it is larger than
the deadline 5, i.e., the task set is not schedulable using deadline monotonic
fixed-priority scheduling.

c. Since the deadlines are smaller than the periods the only way to answer this
question that is part of the course is to draw the schedule. The schedule is
shown in Figure 1. Since the hyper period of the task set is 12 it is sufficient
to draw the schedule up to time 12. From the schedule it can be seen that
R A = 4 ≤ 5, RB = 4 ≤ 4, and RC = 2 ≤ 2, i.e., the task set is schedulable.

4. When we teach PID control we propose to discretize the three terms (P, I and
D) separately. The main reason for this is that it increases the transparency
of the algorithm. However, this is not the only way to do it.

a. Consider the following PI controller:

U(s) = (K + K
TIs

)E(s)

Discretize the transfer function above as a single transfer function using the
Backward Euler approximation, i.e., the two terms should not be discretized
individually. Write the result as a difference equation involving the control
signal u and the error e and with u(k) only, on the left hand side of the
equality sign. (Hint: Start by writing the transfer function with a single
fraction bar.) (1 p)

4

Figure 1 EDF schedule for Problem 3c.

b. Assume now that the actuator used is limited between umax and umin. What
unwanted behavior might occur if the above discretized controller is used?

(1 p)

c. Modify the controller so that the problem in b. is solved. (1 p)

Solution

a.
G(s) = K + K

TIs
=

KTIs+ K
TIs

This transfer function we now discretize using Backward Euler, i.e., we replace
s with q−1

qh . Then the resulting difference equation will be

u(k) = u(k− 1) + (K + K h/TI)e(k) − K e(k− 1)

b. If the actuator is limited then the control u(k) might wind-up which will
eventually cause large over- and undershoots.

c. In order to avoid this the controller should be modified to

u(k) = max(umin,min(umax, u(k− 1) + (K + K h/TI)e(k) − K e(k− 1)))

5

5. You are part of a film crew doing a documentary on old propeller planes. At
one time, you set up your camera (recording 60 frames per second) and film
a plane starting its engine. You watch as the propeller starts to turn with
increasing speed, until it reaches a constant angular rate.
Curious, you ask the pilot how fast the propeller was turning when the
angular rate was constant, but he only remembers it was somewhere between
2000 and 3000 revolutions per minute (rpm).

a. You watch the film and count the number of revolutions during a short
time period. The estimate you get is 1200 rpm. Assuming that the pilot is
correct, what is the likely cause for this mismatch? What could have been
done differently to ensure that the film would show the correct angular rate
of the propeller? (1 p)

b. Assuming that the pilot is correct, what was the exact angular rate of the
propeller? (1 p)

Solution

a. The camera records the propeller motion with a sampling frequency of fs = 60
Hz, while the true angular rate of the propeller is between 2000/60 = 33.33
and 3000/60 = 50 Hz. Since the rate of the propeller is above the Nyquist
frequency (fN = fs/2 = 30 Hz), the estimate of 1200/60 = 20 Hz is most
likely due to aliasing.
To be completely sure that the correct rate is recorded in the film you would
have to use a camera with a faster sampling rate. Only knowing the upper
bound 50 Hz, you would need a sampling rate of at least fs = 50 ·2 = 100 Hz.

b. Assuming that the fundamental alias frequency is f = 1200/60 = 20 Hz, we
have:

f = p(ftrue + fN)mod(fs) − fN p.

There is only one possible solution for 33.33 ≤ ftrue ≤ 50 Hz, given by

ftrue = − f − fN + fs + fN = − f + fs = −20+ 60 = 40Hz.

Thus the exact angular rate of the propeller was 40 Hz (= 2400 rpm).

6. Consider the following linear system

x(k+ 1) =
(

0.5 1
0.5 0.7

)
x(k) +

(
0.2
0.1

)
u(k).

a. Assume state-feedback and design a dead-beat controller for this system.
(1 p)

b. Assume that x(0) = (a b)ᵀ. For what values of of a and b will the magnitude
of u(0) using the dead-beat controller from a. be less than or equal to 10?
Draw a figure where the values of a and b that satisfies the inequality are
clearly marked out. (1 p)

6

Solution

a. We are designing a state-feedback controller of the form u(k) = −Lx(k) such
that all the closed-loop poles are located in the origin (dead-beat control).
Denoting L = (l1 l2) we have the following characteristic polynomial for
the closed-loop system:

det(zI − (Φ − ΓL)) =
∣∣∣∣ z+ 0.2l1 − 0.5 0.2l2 − 1

0.1l1 − 0.5 z+ 0.1l2 − 0.7

∣∣∣∣ = . . .

= z2 + z(0.2l1 + 0.1l2 − 1.2) − 0.04l1 + 0.05l2 − 0.15

Comparing coefficients with the desired polynomial z2, we get:

0.2l1 + 0.1l2 = 1.2
−0.04l1 + 0.05l2 = 0.15

with the solution

(l1 l2) = (
45
14

39
7) ((3.21 5.57)

b. The considered inequality is pu(0)p ≤ 10, which for the dead-beat control law
gives

p
45
14

a+ 39
7

bp ≤ 10.

Figure 2 shows the values of a and b that satisfy this inequality. The boundary
of the shaded region is given by the two lines b = −15a/26 + 70/39 and
b = −15a/26− 70/39.

7. For a linear system of the form

x(k+ 1) = Φx(k) + Γu(k)
y(k) = Cx(k)

we can design an observer with direct term given by the following system of
difference equations:

x̂(k) = Φ x̂(k− 1) + Γu(k− 1) + K[y(k) − C(Φ x̂(k− 1) + Γu(k− 1))]

In this problem we will consider the case when Φ, Γ and C are given by

Φ =
(

1 0.2
0 1

)
, Γ=

(
0
1

)
, C = (1 −1)

a. Compute the equations governing the reconstruction error x̃ = x − x̂ for the
case when K = (2 4)ᵀ. Will the reconstruction error converge to zero?

(1.5 p)

b. Determine K such that the observer poles are placed in z = 0 and z = 0.2.
(1 p)

7

Figure 2 Values of a and b that satisfies the inequality pu(0)p ≤ 10 (shaded region) in
Problem 6b.

c. Let K = (k1 k2)
ᵀ. Find a relation between k1 and k2 that ensures that the

output y of the system is estimated with zero error at all times. (1.5 p)

Solution

a. The reconstruction error x̃ for the observer with direct term is governed by
the following system of difference equations:

x̃(k+ 1) = (I − KC)Φ x̃(k) =
((

1 0
0 1

)
−

(
2
4

)
(1 −1)

)(
1 0.2
0 1

)
x̃(k)

=

(
−1 1.8
−4 4.2

)
x̃(k).

The characteristic polynomial of the error dynamics is:

det
(

zI −
(
−1 1.8
−4 4.2

))
=

∣∣∣∣ z+ 1 −1.8
4 z− 4.2

∣∣∣∣ = z2 − 3.2z+ 3

= (z− 1.6)2 + 3− 1.62 = (z− 1.6+ i
√

0.44)(z− 1.6− i
√

0.44)

We see that the poles are located in z = 1.6±i
√

0.44, which are located outside
the unit circle. Therefore the dynamics are unstable, and the reconstruction
error will not converge to zero.

8

b. We compute the characteristic polynomial for K = (k1 k2)
ᵀ:

det((I − KC)Φ) =
∣∣∣∣ z+ k1 − 1 0.8k1 − 0.2

k2 z− 0.8k2 − 1

∣∣∣∣ = z2 + z(k1 − 0.8k2 − 2) − k1 + k2 + 1.

The desired characteristic polynomial is z(z − 0.2) = z2 − 0.2z, which by
comparing coefficients gives:

{
k1 − 0.8k2 − 2 = −0.2

−k1 + k2 + 1 = 0
\

{
k1 = 5

k2 = 4

c. The error ỹ in the estimation of the system output is given by:

ỹ(k) = y(k) − Cx̂(k) = Cx̃(k) = C(I − KC)Φ x̃(k− 1)
= (C − CKC)Φ x̃(k− 1) = (1− CK)CΦ x̃(k− 1).

We see that if we choose CK = 1, then ỹ = 0 at all times. This gives:

1 = CK = (1 −1)
(

k1

k2

)
= k1 − k2,

\

k1 = k2 + 1,

which is the relation between k1 and k2 we are looking for.

8. Match the step responses shown in Figure 3 with the pulse transfer functions
below:

H1(z) =
0.3

z− 0.7

H2(z) =
1.96

z2 + 0.8z+ 0.16

H3(z) =
0.3

z2 − 0.7z

H4(z) =
0.34

z2 − 1.4z+ 0.74

H5(z) =
0.3z

z− 0.7

H6(z) =
1.4

z+ 0.4

Each pulse transfer function corresponds to one step response, and it is
assumed in all cases that

y(−1) = y(−2) = 0, u(k) =
{

0, k < 0,

1, k ≥ 0.

Correct motivations for each matched pair are required for full points. (Hint:
Some numerical calculations may be needed to solve this.) (3 p)

9

0 5 10 15 20 25 30
0

1

2

y
(k

)

A

0 5 10 15 20 25 30
0

1

2
B

0 5 10 15 20 25 30
0

1

2

y
(k

)

C

0 5 10 15 20 25 30
0

1

2
D

0 5 10 15 20 25 30

k

0

1

2

y
(k

)

E

0 5 10 15 20 25 30

k

0

1

2
F

Figure 3 Step responses in Problem 8.

Solution
Starting out, we note in Figure 3 that B, C and F have critically damped
step responses, which is only the case when the pulse transfer function have
all their poles on the positive (including the origin) real axis within the unit
circle. By checking the poles of the pulse transfer functions, we see that H1,
H3 and H5 satisfy this. In fact we have

H3(z) =
1
z

H1(z), H5(z) = zH1(z).

This means that the responses of H3 and H5 will be identical to those of H1
with a backward- and forward time-shift respectively. From this analysis we
see that

B \ H1(z), C \ H3(z), F \ H5(z).

Now we have A, D and E left, which should be matched with the two second
order systems H2 and H4 and the first order system H6. We note that for A
and E that y(0) = y(1) = 0, while for D we see y(1) ,= 0. Checking the first
few time steps for the systems we get

H2 : y(k) = −0.8y(k− 1) − 0.16y(k− 2) + 1.96u(k− 2),
=[y(0) = 0, y(1) = 0, y(2) = 1.96.

H4 : y(k) = 1.4y(k− 1) − 0.74y(k− 2) + 0.34u(k− 2),
=[y(0) = 0, y(1) = 0, y(2) = 0.34.

H6 : y(k) = −0.4y(k− 1) + 1.4u(k− 1),
=[y(0) = 0, y(1) = 1.4, y(2) = 0.84.

10

Since y(1) ,= 0 only for H6 we have

D \ H6(z).

Finally, by comparing the values of y(2) of the two remaining systems and
the remaining step responses it is clear that

A \ H4(z), E \ H2(z).

So in summary:

A \ H4(z), B \ H1(z), C \ H3(z), D \ H6(z), E \ H2(z), F \ H5(z).

9. Java contains a built-in synchronization mechanism called a barrier. Assume
that we have a number of threads executing a part of an overall application
followed by a point at which the threads must coordinate their results. The
barrier is simply a waiting point where all the threads can sync up to either
merge results or to safely move on to the next part of the application.
The Java class implementing barriers is called CyclicBarrier. The reason it
is called cyclic is that it can be re-used after the waiting threads have been
released.
A slightly simplified version of the interface to CyclicBarrier is:

public class CyclicBarrier {

public CyclicBarrier(int parties);

public int await();

}

The core of the class is the await() method. This is called by each thread
that needs to wait until the required number of threads are waiting at the
barrier. In the constructor the number of threads (parties) using the barrier
is specified. This number is used to trigger the barrier; the waiting threads
are all released when the number of threads waiting on the barrier is equal to
the number of parties. The latter includes the thread that caused the barrier
to be triggered.
Each thread that calls the await() method gets back a unique return value.
This value is related to the arrival order of the thread at the barrier. The first
thread that arrives gets a value that is one less than the number of parties
and the last thread to arrive will get a value of zero.
The barrier is very simple. All the threads wait until the number of re-
quired parties arrive. Upon arrival of the last thread, the waiting threads
are released, and the barrier can be re-used. Since the barrier is so simple
it is straightforward to implement it using the Java synchronization mech-
anisms that are part of the course (synchronized, wait(), notify() and
notifyAll()).
Your task is to implement the class CyclicBarrier with the interface and
semantics described above. In order to get full points you must ensure that

11

all threads that are released really will be released, also if some other thread
has started to re-use the barrier before the released threads have executed.
Correct handling of exceptions is not required. You may also disregard any
spurious wake-up issues. (3 p)

Solution
The solution below does not not handle spurious wake-ups:

Public class CyclicBarrier {

private int parties;

private int barrierLimit;

public CyclicBarrier(int parties) {

this.parties = parties;

barrierLimit = parties;

}

public synchronized int await() throws InterruptedException {

int threadNum;

parties = parties - 1;

threadNum = parties;

if (parties <= 0) {

parties = barrierLimit;

notifyAll();

return threadNum;

} else {

try {

wait();

} catch (InterruptedException x) {

parties++;

throw(x);

}

return threadNum;

}

}

}

12

