
Department of

AUTOMATIC CONTROL

Real-Time Systems

Exam June 4, 2019, hours: 8.00–13.00

Points and grades

All answers must include a clear motivation and a well-formulated answer.

Answers may be given in English or Swedish. The total number of points is 25.

The maximum number of points is specified for each subproblem.

Accepted aid

The textbooks Real-Time Control Systems and Computer Control: An Overview

- Educational Version. Standard mathematical tables and authorized “Real-Time

Systems Formula Sheet” plus the formula sheet from Reglerteknik AK. Pocket

calculator.

Results

The result of the exam will become accessible through LADOK. The solutions will

be available on WWW:

http://www.control.lth.se/course/FRTN01/

1



1. Consider the discrete time system

x(k+ 1) =









0.8 0.4

0.3 1.1









x(k) +









0.2

0.3









u(k)

y(k) =


 1 0



 x(k)

a. Design a state-feedback controller so that the state goes to origin in exactly

two time steps given an impulse disturbance x(0) = xo. (1 p)

b. Modify the above controller so that the state goes to xref = [0.5 0.2]T in

exactly two time steps given an impulse disturbance x(0) = xo. (1 p)

2. Consider the continuous-time system

dx

dt
= Ax+









0

1









u

y =


 1 0



 x

Sample this using ZOH with sampling period h for the two cases below.

a.

A =









0 0

3 0









(1 p)

b.

A =









0 1

0 −4









(1 p)

3. You are controlling a system that can be modeled as a double integrator

and where one of the control objectives is to be able to follow step reference

changes without any stationary errors:

G(s) =
Y (s)

U(s)
=

1

s2
. (1)

You are discussing with a colleague whether you should implement a state

feedback controller or a PD controller.

a. Why aren’t you considering integral action in the controller? (1 p)

b. What do you think in the end will be the difference between the state feedback

controller U(s) = L · X(s) and the PD controller U(s) = Kp · E(s)+Kd ·sY (s)?
(1 p)

4. The table below describes three processes with their respective periods, rela-

tive deadlines and worst case execution times.

a. What is the CPU utilization? (1 p)

2



Task Ti Di Ci

A 7 5 3

B 3 2 1

C 15 8 3

b. Will all deadlines be met if rate monotonic scheduling is used? (2 p)

5. Nicolas, a new engineer who had taken the Real-Time Systems course in

France had not learned that it was advantageous to discretize the three terms

in the PID controller separately. His continuous-time PID representation was

as follows

U(s) = (kp +
ki

s
+ kds)E(s)

a. First Nicolas tried to discretize the above transfer function as a single transfer

function using the Forward Euler approximation. However, when he tried to

implement the controller based upon this discretization then he ran into a

problem. Do the discretization and explain what the problem is. (1.5 p)

b. In order to avoid this problem he instead tried to discretize the above transfer

function as a single transfer function using the Backward Euler approxima-

tion. Do this and write the resulting control code split up into one Calcula-

teOutput and one UpdateState part using the scheme below. Anti-windup is

not necessary. In order to get full points the code must be written so that the

execution time is minimized. (1.5 p)

y = getInput();

r = getReference;

// CalculateOutput

setOutput(u);

// updateState

6. In the Stork real-time kernel a context switch is initiated by a call to the

Schedule procedure. Inside Schedule a check is performed to see if a change

has been made that affects the first process (thread) in ReadyQueue. If that

is the case a context switch is performed. Explain under which conditions a

context switch will be performed in the following three cases (the following

three calls to Schedule). (3 p)

a. PROCEDURE Wait(sem: Semaphore);
VAR

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable();

WITH sem^ DO

IF counter > 0 THEN

DEC(counter);

ELSE

MovePriority(Running,waiting);

Schedule; (* Case a *)

END;

3



END;

Reenable(oldDisable);

END Wait;

b. PROCEDURE Signal(sem: Semaphore);
VAR

oldDisable : InterruptMask;

BEGIN

oldDisable := Disable();

WITH sem^ DO

IF NOT isEmpty(waiting) THEN

MovePriority(waiting^.succ, ReadyQueue);

Schedule; (* Case b *)

ELSE

INC(counter);

END;

END;

Reenable(oldDisable);

END Signal;

c. PROCEDURE Clock;

VAR P: ProcessRef;

BEGIN

IncTime(Now,Tick); (* Now := Now + Tick *)

LOOP

P := TimeQueue^.succ;

IF CompareTime(P^.head.nextTime,Now) <= 0 THEN

MovePriority(P,ReadyQueue);

ELSE

EXIT;

END;

END;

DEC(Running^.timer); (* Round-robin time slicing *)

IF Running^.timer <= 0 THEN

MovePriority(Running,ReadyQueue);

END;

Schedule; (* Case c *)

END Clock;

7. The following code for multiplying two Q4.3 fixed-point numbers X and Y and

storing the result in Z (also Q4.3) contains three errors. Which are the errors

and what will their consequences be? (3 p)

#include <inttypes.h>

#define n 3

int8_t X, Y, Z;

int16_t temp;

...

temp = X * Y;

temp = temp + (1 << n);

temp = temp >> n;

Z = temp;

if (Z > INT8_MAX)

Z = INT8_MAX;

4



else if (Z < INT8_MIN)

Z = INT8_MIN;

8. Consider a surveillance system of cameras that are connected to a central

network manager.

The network manager allocates a certain amount of bandwidth to the cameras

in the network. The cameras use this allocated bandwidth to send images

(frames) captured by them. Once 30 frames are sent by the cameras, the

program ends. Write a Grafcet solution of this problem for the case when

there is only one camera and one network manager. The Grafcet solution

may consist of two Grafcet function charts that communicate with each other

using shared variables. The special boolean variable <step-name>.x may also

be used as a shared variable. (3 p)

The network manager performs the following actions:

1. Initialize

2. Set the bandwidth allocated to the camera (= alloc_bw) to, e.g., 50 and

wait for the camera to send the image.

3. If the number of sent frames is smaller than 30, then go to Step 2.

4. If the number of sent frames is greater than or equal to 30 then termi-

nate.

The camera performs the following actions

1. Initialize and wait for the network manager to allocate bandwidth.

2. Calculate the frame size for the current frame using the formula

framesize = quality * max_size (You may assume that these variables

already are available).

3. If the frame size is greater than the allocated bandwidth (alloc_bw) then

do not send the frame.

4. If the frame size is smaller or equal to the allocated bandwidth then

send the frame (using the Grafcet action S sendFrame() and increment

the number of frames sent (use the variable Frames to count the number

of frames sent).

5. Wait for the network manager to allocate bandwidth again.

6. Go to Step 2.

9. Kalle, a new engineer who did not take the Real-Time Systems course, was

given the task to implement a PI-controller. He came up with the following

solution. It is structured into one PI class and one Regul class in the common

way.

public class PI {

private double y, yref, v;

private double I = 0.0;

private double K = 0.0;

private double Ti = 0.0;

private double Tr = 0.0;

private double H = 0.0;

private double Beta = 0.0;

5



public PI(Reference ref) {

setParameters(1.0,10.0,10.0,1.0);

}

public synchronized double calculateOutput(double y, double yref) {

this.y = y;

this.yref = yref;

v = K*(Beta*yref - y) + I;

return v;

}

public synchronized void updateState(double u) {

I = I + K*H/Ti*(yref - y) + (H/Tr)*(u - v);

}

public synchronized long getHMillis() {

return (long)(H*1000.0); //Sampling interval in milliseconds

}

public synchronized void setParameters(double K, double Ti,

double Tr, double Beta) {

this.K = K;

this.Ti = Ti;

this.Tr = Tr;

this.Beta = Beta;

}

}

// ---------------------------------------------------------------------------

// ---------------------------------------------------------------------------

public class Regul extends Thread {

private Reference ref;

private PI pi = new PI();

private AnalogIn yChan;

private AnalogOut uChan;

private long h;

private double y,yref,v,u;

private double uMax = 10.0;

private double uMin = -10.0;

public Regul(Reference ref) {

this.ref = ref;

try {

yChan = new AnalogIn(1);

uChan = new AnalogOut(1);

} catch (Exception e) {

System.out.println(e);

}

}

private double limit(double v, double min, double max) {

if (v < min) {

6



v = min;

} else {

if (v > max) {

v = max;

}

}

return v;

}

public void run() {

setPriority(7);

long duration;

long t=System.currentTimeMillis();

while (true) {

yref = ref.getReference();

try {

y = yChan.get();

} catch (Exception e) {

System.out.println(e);

}

synchronized(pi) { // To avoid parameter changes inbetween

v = pi.calculateOutput(y, yref);

u = limit(v,uMin,uMax);

try {

uChan.set(u);

} catch (Exception e) {

System.out.println(e);

}

pi.updateState(u);

}

t = t + pi.getHMillis();

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (Exception x) {

}

}

}

}

}

In addition to the Regul thread, Kalle’s application also contained other

threads of lower priority than Regul.

a. When Kalle started the application he soon detected that something was

wrong. However, the controller appeared to do some type of control. What type

of controller was it that Kalle in fact had implemented? (Hint: Subproblem b

might point you in the right direction.) (1 p)

b. Kalle detected that something was strange when he looked upon the control

performance plots (step responses). The plant that he was controlling was a

continuous-time first order system with the pole strictly in the left complex

half plane. What was it that Kalle found strange? (1 p)

c. When Kalle started the testing he used a real-time Java Virtual Machine

(JVM) implementation in which the underlying native threads had the same

7



priority as the Java threads. After a while he changed to an ordinary JVM

and then he got a different timing behaviour. Describe the timing behaviour

that Kalle got using the two JVMs and the reasons for the behaviour. (2 p)

8


