
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam – January 3, 2018, 08:00 – 13:00

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem.

Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid
All course material, except for exercises, old exams, lab instructions, and solutions of
these, may be used as well as standard mathematical tables and authorized “Formel-
samling i reglerteknik”/”Collection of Formulae”. Pocket calculator.

Note!
In many cases the subproblems can be solved independently of each other.

Good Luck!
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1. Consider the dynamical system

ÿ + sin(ẏ) = −5y2 + 5

a. Write the system on state-space form. (1 p)

b. Find the equilibrium points. (1 p)

c. Determine the character of each equilibrium point as, e.g., stable node, unstable
focus, etc. (2 p)

Solution

a. Introduce the states x1 = y and x2 = ẏ. The state-space form is then

ẋ1 = x2 (1)
ẋ2 = −5x2

1 − sin(x2) + 5 (2)

b. The time derivatives are zero in the equilibria, i.e.,

0 = x2 (3)
0 = −5x2

1 − sin(x2) + 5 (4)

Insertion of the first equation into the second yields −5x2
1 + 5 = 0 ⇔ −x2

1 +
1 = 0 ⇔ x1 = ±1. Hence, there are two equilibrium points, and these are
(x1, x2) = (−1, 0) and (x1, x2) = (1, 0)

c. Denote by f(x) the right-hand side of state-space representation. First, we
linearize the system.

df
dx =

(
0 1

−10x0
1 − cos(x0

2)

)
(5)

For (-1,0): Insertion of the equilibrium point yields

df

dx
=
(

0 1
10 −1

)
(6)

The eigenvalues are λ1 = 2.7016 and λ2 = −3.7016. Hence, this is a saddle
point.
For (1,0): Insertion of the equilibrium point yields

df

dx
=
(

0 1
−10 −1

)
(7)

The eigenvalues are λ1,2 = −1/2±
√

39/4i. This is therefore a stable focus.

2. Consider the system given by

q̈ = −(q3 + q̇)

Is the system globally asymptotically stable?
Hint: It might be useful to introduce the states x1 = q, x2 = q̇, and consider a
function on the form V (x) = cx4

1 + dx2
2. (3 p)
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Solution
Using the states as suggested by the hint, we write the system on state-space
form. {

ẋ1 = x2

ẋ2 = −x3
1 − x2

(8)

We see that the origin is an equilibrium point. With c and d positive constants,
we have

V (0) = 0
V (x) > 0 for all x 6= 0
V (x)→∞ as ||x|| → ∞

We further have V̇ = 4cx3
1ẋ1+2bx2ẋ2 = 4cx3

1x2−2bx2(x3
1+x2). Let for instance

c = 1, d = 2. Then V̇ = −4x2
2 ≤ 0. The only solution of the state-space system

that yields V̇ = 0 is (x1, x2) = (0, 0). It therefore follows from LaSalle’s theorem
that the origin is globally asymptotically stable.

3. Consider the system

ẋ1 = x2 + x1(2− x2
1 − x2

2)
ẋ2 = −x1 + x2(2− x2

1 − x2
2)

A solution to this system is given by

(x0
1, x

0
2) = (

√
2 sin(t),

√
2 cos(t))

a. Linearize the system around the limit cycle. In particular, write the linearized
system on the form

δ̇ = A(t)δ

where A(t) is a time-dependent system matrix, and δ = x− x0. (1 p)

b. The trajectory is periodic and can thus be seen as a limit cycle. Determine
whether this limit cycle is stable or not.
Hint: For this subproblem, introduce polar coordinates r and θ, i.e., let

x1 = r cos(θ)
x2 = r sin(θ)

(2 p)

Solution

a. In compact notation we have:
ẋ = f(x)

Introduce δ = x(t) − x0(t) as the deviation from the nominal trajectory. We
have

ẋ = ẋ0 + δ̇
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and the first order Taylor expansion of f around x0(t) is given by

ẋ = f(x0) + ∂f(x0)
∂x

δ

So
ẋ0 + δ̇ = f(x0) + ∂f(x0)

∂x
δ

Since x0(t) is a solution to the state equation we have ẋ0 = f(x0) and thus

δ̇ = ∂f(x0(t))
∂x

δ = A(t)δ

where

A(t) =

 ∂f1(x0(t))
∂x1

∂f1(x0(t))
∂x2

∂f2(x0(t))
∂x1

∂f2(x0(t))
∂x2

 =
(

−4 sin2(t) 1− 4 sin(t) cos(t)
−1− 4 sin(t) cos(t) −4 cos2(t)

)
.

b. To determine stability of the limit cycle, we introduce polar coordinates. With
r ≥ 0:

x1 = r cos(θ)
x2 = r sin(θ)

Differentiating both sides gives(
ẋ1

ẋ2

)
=
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)(
ṙ

θ̇

)

Inverting the matrix gives:(
ṙ

θ̇

)
= 1
r

(
r cos(θ) r sin(θ)
− sin(θ) cos(θ)

)(
ẋ1

ẋ2

)

Plugging in the state equations results in:

ṙ = r(2− r2) (9)
θ̇ = −1 (10)

We see that the the only equilibrium points are 0 and
√

2 (since r ≥ 0).
Linearizing around r =

√
2 (i.e. the limit cycle) gives:

˙̃r = −4r̃

Since the eigenvalue is strictly negative, this implies that r =
√

2 is a locally
asymptotically stable equilibrium point. Hence the limit cycle is stable.

4. Consider an asymptotically stable linear system G(s), of which the Nyquist plot
is shown in Figure 1. The linear system is connected with negative feedback to
a static nonlinearity, Ψ, as shown in Figure 2.
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Figure 1 Nyquist plot of G(s) in Problem 4.
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Figure 2 Feedback in Problem 4.

a. Use the Circle criterion to determine a sector for Ψ, as large as you can, such
that the feedback system is BIBO stable. (2 p)

b. Is the system BIBO stable for Ψ(·) = sin(·)? (1 p)

Solution

a. Figure 3 shows that the Nyquist plot lies inside the disk D(−0.5; 1). The max-
imal stability sector is therefore (−1; 2).

b. The function Ψ(x) = sin(x) is for instance bounded by the lines l1 = −x and
l2 = x. Since this is within the stability sector (−1; 2), the feedback system is
stable.

5. A team of engineers are working together to build a self-driving electric car.
They have a sketch ready, but still a lot of work remains. One subproblem
consists of designing a sliding mode controller for the system
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Figure 3 Nyquist plot of G(s)

ẋ1 = x2 + u

ẋ2 = x1

with the switch function σ(x) = x1 + 2x2. They turn to you for advice, since
they lack experience in control design.

a. Design a sliding mode controller with the switch function σ(x). (2 p)

b. Determine the sliding set and the sliding dynamics. (1 p)

Solution

a. The control law is

u = −p
TAx

pTB
− µ

pTB
sign(σ(x)) (11)

where

σ(x) = pTx = 0 (12)

Hence, we have pT= [1 2], and this yields that

u = −(2x1 + x2)− µsign(x1 + 2x2) (13)
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b. The sliding set is where σ(x) = x1 + 2x2 = 0, i.e., the line x1 + 2x2 = 0.
To find the sliding dynamics, we first determine the equivalent control ueq. On
the sliding set we have

σ̇ = ẋ1 + 2ẋ2 = x2 + ueq + 2x1 = 0

and therefore

ueq = −2x1 − x2

The sliding dynamics is

ẋ1 = x2 + ueq = −2x1

ẋ2 = x1

6. Consider the system
d3z

dt3 + d2z

dt2 + dz
dt = −1

3z
3

a. This can be seen as a negative feedback connection between a linear system
P (s) and a static nonlinearity f(x) = 1

3x
3. Determine P (s). (2 p)

b. Calculate the describing function of the nonlinearity f(x) = 1
3x

3. (2 p)
(Hint:

∫ 2π
0 sin(x)4dx = 3π

4 )

c. Analyze the existence, amplitude and frequency of a possible limit cycle.
(2 p)

Solution

a. The Laplace transform between −f and z results in

P (s) = 1
s(s2 + s+ 1) .

b. The function is odd, which implies that it is real.

b1 = A3

3π

∫ 2π

0
sin(φ)4dφ = A3

4 ,

which gives that the describing function

N(A) = A2

4 .
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c. We want to find out the points where ImP (iω) = 0. Some calculations gives
that

ImP (iω) = −(1− ω2)
ω((1− ω2)2 + ω2) ,

which in its turn gives that ω = 1. Finally, this yields that

P (i) = −1 = − 1
N(A) = − 4

A2 ⇒ A = 2.

To conclude: The frequency of the limit cycle is ω = 1 rad/s and its amplitude
is A = 2.

7. Isabelle and Antonio work as control engineers in a toy factory. This year, they
aim to improve the number of toys produced per year, and have encountered
the following optimal control problem as a main challenge.

Minimize
∫ 1

0
4u(t)2 dt+ 6x(1)2

subject to

ẋ = u

x(0) = 1

Unfortunately, they are not very experienced in optimal control, and the rest
of the staff are on Winter vacation. They kindly ask you for help, since they
know that you have studied nonlinear control. Derive the optimal control law
for the problem above.

(3 p)

Solution
We have a fixed final time, tf = 1. Further,
Φ(x(tf )) = 6x(tf )2

L = 4u2

f(x, u) = u
Hamiltonian:

H = L+ λf = 4u2 + λu

Adjoint equation:

λ̇ = −Hx = 0
λ(tf ) = Φx(x(tf )) = 12x(tf )

Therefore, it can be noted that λ is constant, λ(t) = 12x(tf ).
Optimality conditions:
Minimizing H with respect to u gives

Hu = 8u+ λ = 0⇔ u = −λ8
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Hence, u = −3
2x(tf ).

The last step is to insert this into the system equation, which yields

ẋ = −3
2x(tf )⇔ x(tf )− x(0) =

∫ tf

0
−3

2x(tf ) dt⇔ x(1)− 1 = −3
2x(1)⇔ x(1) = 2

5

Hence, the optimal control law is u = −3
2x(tf ) = −3

5
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