Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

» Gain scheduling

» Internal model control

v

Model predictive control
» Nonlinear observers

» Lie brackets

Material:

> Lecture notes

> Internal model, more info in e.g.,

> Section 8.4 in [Glad&Ljung]
» Ch 121 in [Khalil

Gain Scheduling
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Example of scheduling variables

» Production rate
» Machine speed

» Mach number and dynamic pressure

Compare structure with adaptive control!
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> state dependent controller parameters.
> K =K(q)

> design controllers for a number of operating points.
> use the closest controller.

Problems:

» How should you switch between different controllers?
» Bumpless transfer

» Switching between stabilizing controllers can cause instability.

o Gain scheduling

e Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets




Internal Model Control

Feedback from model error y — 3.

Design: Choose G~ G and Q stable with Q ~ G~1.

Two equivalent diagrams

Example
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Internal Model Control Can Give Problems

» Unstable G
> Q% G~ due to RHP zeros

» Cancellation of process poles may show up in some signals

Internal Model Control with Static Nonlinearity

Include the nonlinearity in the internal model. Choose @ ~ G~!.
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Small gain theorem can then be used for analysis!

Outline

o Gain scheduling

o Internal model control

o Model predictive control
o Nonlinear observers

o Lie brackets

Model Predictive Control — MPC
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1. Derive the future controls u(t +j), j7=0,1,...,N —1 that
give an optimal predicted response.

2. Apply the first control u(t).

3. Start over from 1 at next sample.

What is Optimal?

Minimize a cost function, V, of inputs and predicted outputs.

u(t+ N —1) gt + MJt)
V=V(U,Y), U= : , Y= :
u(t) Yyt +1J¢)
V' often quadratic
V(U Yi) = Y"QuY: + U QuU, (1)

= linear controller
u(t) = —LZ(t|t)




Model Predictive Control

+ Flexible method
* Many types of models for prediction:
> state space, input—output, step response, FIR filters
* MIMO
* Time delays

+ Can include constraints on input signal and states
+ Can include future reference and disturbance information
— On-line optimization needed

— Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)

A predictor for Linear Systems

Discrete-time model

a(t+1) = Aw(t) + Bu(t) + Bont)  _ )
y(t) = Cx(t) + va(t) 1

Predictor (v unknown)

F(t+k+ 1]t) = AZ(t + k|t) + Bu(t + k)
Gt + K[t) = C3(t + klt)

The M-step predictor for Linear Systems

Z(t|t) is predicted by a standard Kalman filter, using outputs up to
time ¢, and inputs up to time ¢ — 1.

Future predicted outputs are given by

u(t+M —1)]
gt + Mlt) CAM CB CAB CA’B :
; =| : |aum+| O ©B CAB u(t+ N —1)
3t +11t) cA o : ;
u(t)

Y, = D,3(t[t) + DUy

Limitations

Limitations on control signals, states and outputs,
() < Cu Jei®)] < Coy (O] < Gy

leads to linear programming or quadratic optimization.

Efficient optimization software exists.

Design Parameters

v

Model
M (look on settling time)
> N as long as computational time allows

v

> If N < M — 1 assumption on u(t + N),...,u(t + M — 1)
needed (e.g., =0, =u(t+ N —1).)

> Qy, Qu (trade-offs between control effort etc)

> Cy, Cy limitations often given

» Sampling time

Product: ABB Advant

Example—Motor

1 0.139 0.214
A= [o 0.861] » B= [2.786] » 0= [1 0]

.

Minimize V(U;) = ||Y; — R|| where R = , r=reference,
r

M=8 N=2ult+2) =ult+3)=u{t+7)=...=0

Example—Motor

cAs CASB CA'B
i=1] : [200+ : :
CA 0 CB
= Dya(t) + DU,

(")

Solution without control constraints

Ui =—(DID,)'DIDx 4+ (DID,)'DIR =
_[-250 —0.18) (a1(t) —r
- 277  0.51 x(t)

u(t) = —2.77(21 (£) — 1) — 0.51aa(t)

Example—Motor—Results

No control constraints in opti- Control constraints |u(t)| <1 in
mization (but in simulation) optimization.




Outline

o Gain scheduling

o Internal model control
o Model predictive control
e Nonlinear observers

o Lie brackets

Nonlinear Observers

What if x is not measurable?
&= f(z,u), y=nh(z)
Simplest observer (open loop — only works for as. stable systems).
&= f(@u)
Correction, as in linear case,
2= f(@u) + Ky - h(@))
Choices of K

> Linearize f at x¢, find K for the linearization
> Linearize f at Z(t), find K (t) for the linearization

Second case is called Extended Kalman Filter

A Nonlinear Observer for the Pendulum

Control tasks:
1. Swing up
2. Catch
3. Stabilize in upward position

The observer must to be valid for
a complete revolution

A Nonlinear Observer for the Pendulum

d%0

ﬁ:sine-i—ucose
x1:9v 1‘2:% =

d$1

— ==

a 7

dy si + ucos

— = SInI u S T

a 1 1

Observer structure:

di

s = 19 +k1(1?1 7@])
di
% =sindy + wcos I +ko(z1 — 1)

A Nonlinear Observer for the Pendulum

Introduce the error T =& —

P = —k1Z1 + o
di
(Zz =sin#; —sinzy + u(cosdy — cosx1) — kaZy
d[a] _ [~k 1] [&], [0],
dt |Z2| | —ke 0] |22 1
v = QSIH%(COS (x1+ %) — usin(z; + %))

jl - !

G(s)

Stability with Small Gain Theorem

The linear block:

s) = 1 B 1

2+ kis+ky 2 + 2Cwos + w}

With ¢ > % this gives

) 1
~¢ = max |G(iw)| = |G(0)| = 2
0

Moreover
< 21V + udag

so the observer is stable by the small gain theorem provided that
ko = wd is selected to satisfy wia\/l +u2,, <1

[v| = |2sin %(COS (z1 4+ %) — usin(z; + %))

A Nonlinear Observer for the Pendulum

Control Signal

Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

e Lie brackets




Controllability

Linear case
i = Ax + Bu

All controllability definitions coincide

Lie Brackets

Lie bracket between f(z) and g(z) is defined by

0 9]
[f: 9] :aT‘Z —%g

0 - 2(T), Example:
x(0) — 0, ~ [cosm N Kt
2(0) — =(T) e ) YT )
T either fixed or free _99, 9Of
o9l = 5.0 = 5
Rank condition System is controllable iff (1 0 COS T2 0 —sinzy 1
oo z ) 1 0 1
W, = [B AB AHB] full rank .
_ [cosxz + smxg]
Is there a corresponding result for nonlinear systems? ™
Why interesting? The Lie Bracket Tree
& = g1(x)ur + ga(x)us
(1,0), te[0,¢€ fov.[g1.]] 92, (91, g2]]
(0,1), tele 2

[
» The motion (u1,us) = (-1.0), te %25 3d
[

(0,—1), t€ [3¢,4e]
gives motion z(4e) = z(0) + 52[917!]2] + 0(53)
T /T /T /T
Oy = @V 0V o) ey
» The system is controllable if the Lie bracket tree has full

rank (controllable=the states you can reach from = = 0 at fixed time T contains a ball around & = 0)

91: (91, [91. 2]]] 201 [91: 92]1] lg1: (92, [91/62]]] 2:3¢2: (91, 92]]]

Parking Your Car Using Lie-Brackets

Parking the Car

Can the car be moved sideways?

Sideways: in the (—sin(¢), cos(¢), 0,0)T-direction?

0 0 —sin(p+06) —sin(p+6) 0
|0 0 cos(¢+6) cos(p+0) 0] 0
“lo o 0 cos(6) 0
00 0 0 1
x 0 cos(p + ) —sin(p + 6)
d |y 0 sin(p + 6) _ | eosle+0) | e
a1yl _ = =: g3 = "“wriggle
dt | ¢ O sin(6) e cos(6) 3 &8
0 1 0 0
Once More The Parking Theorem
(93, 92] = 992 g _
93,92 oz 93 o g2=...
—sin(y)
cos(y) s "
= 0 = "sideways You can get out of any parking lot that is bigger than your car.
0 Use the following control sequence:

The motion [g3, g2] takes the car sideways.

(—sin(p). cos(p))

Wriggle, Drive, —~Wriggle(this requires a cool head), —Drive
(repeat).




Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets

e Extra: Integral quadratic constraints

Integral Quadratic Constraint

The (possibly nonlinear) operator A on L5'[0, 00) is said to satisfy
the IQC defined by 11 if

o [ FGw) |7 . B(iw)
/w[mv)(z‘w)} i )[mvxz‘w)}d =0

for all v € Ly[0, 00).

A structure (iw) Condition
A passive { (; é }
TR R (i) > 0
sen [ J0 N VISR
5(6) € [-1,1] ;(T 7YX ]
Als) =71 [ I(W)OP(W)Z fr?iw) ] 21naxw/‘)§(:)s:1(6’w/2)

IQC Stability Theorem

TA

G(s) —( y—

Let G(s) be stable and proper and let A be causal.

For all 7 € [0, 1], suppose the loop is well posed and TA satisfies
the IQC defined by IT(iw). If
{ G(;w) } I (iw) { G(;w) } <0 forw e [0,00]

then the feedback system is input/output stable.

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

>> abst_init_iqc;

>> G = t£([10 0 01,[1 2 2 11);
>> e = signal

>> w = signal

>> y = -Gk (etw)

>> w==iqc_monotonic (y)

>> iqc_gain_tbx(e,y)

A servo with friction

Gain2  Saturation

SN ]

s
Integrator Integrator1 Scope

An analysis model defined graphically

monotonic with
restrict rate

performance

Sum Gain

25242541
0.0152+s+.01

Suml  integrator Integratorl

Transfer Fen

Exp(-ds)-1

uncertain delay

iqc_gui(’fricSYSTEM?)
extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple g-forms: 7

LMI #1 size = 1 states:
LMI #2 size = 1 states:
LMI #3 size = 1 states:
LMI #4 size =1 states:
LMI #5 size = 1

[l elelNeNe

states:
Solving with 62 decision variables ...

ans = 4.7139




A library of analysis objects
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The friction example in text format

d=signal;

e=signal;

wl=signal;

w2=signal;

u=signal;

v=tf(1,[1 0])*(u-wl)

x=tf(1,[1 0])*v;

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;
wl==iqc_monotonic(v,0,[1 5],10)
w2==igc_cdelay(x,.01)
igc_gain_tbx(d,e)

= =2

RS2 o= s

disturbance signal
error signal
friction force
delay perturbation
control force
velocity

position

Summary

e Gain scheduling

e Internal model control
e Model predictive control
e Nonlinear observers

e Lie brackets

e Extra: Integral quadratic constraints

Next: Lecture 14

» Course Summary




