

Department of **AUTOMATIC CONTROL**

Nonlinear Control and Servo Systems (FRTN05)

Exam - April 5, 2013 at 14-19

Points and grades

All answers must include a clear motivation. The total number of points is 28. The maximum number of points is specified for each subproblem. Most subproblems can be solved independently of each other. *Preliminary* grades:

- 3: 13 17.5 points
- 4: 18-23.5 points
- 5: 24 28 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be used as well as standard mathematical tables and authorized "Formelsamling i reglerteknik". Pocket calculator.

Good Luck!

1. Find and classify all three equilibrium points of the system

$$\begin{aligned} \dot{x}_1 &= -x_1 + 2x_2 + x_1x_2 + x_2^2 \\ \dot{x}_2 &= -x_1 - x_1^2 - x_1x_2 \end{aligned} \tag{4 p}$$

Solution

The equation system that should be solved is

$$0 = -x_1 + 2x_2 + x_1x_2 + x_2^2$$

$$0 = -x_1 - x_1^2 - x_1x_2$$

The second equation gives

$$x_1(-x_1-1-x_2) = 0 \iff x_1 = 0 \text{ or } x_2 = -x_1-1$$

- Case $x_1 = 0$: The first equation now gives

$$x_2(x_2+2) = 0 \iff x_2 = 0 \text{ or } x_2 = -2$$

That is, equilibria (0,0) and (0,-2).

- *Case* $x_2 = -x_1 - 1$: Now, putting $x_2 = -x_1 - 1$ into the first equation and simplifying

$$-2x_1 - 1 = 0 \iff x_1 = -\frac{1}{2}, \ x_2 = -\frac{1}{2}$$

That is, equilibrium $\left(-\frac{1}{2},-\frac{1}{2}\right)$.

To classify each equilibrium, the Jacobian is determined

$$\frac{\partial f}{\partial x} = \begin{bmatrix} -1 + x_2 & 2 + x_1 + 2x_2 \\ -1 - 2x_1 - x_2 & -x_1 \end{bmatrix}$$

- Case $x^0 = (0, 0)$:

$$\frac{\partial f}{\partial x}(x^0) = \begin{bmatrix} -1 & 2\\ -1 & 0 \end{bmatrix}$$

which has the characteristic polynomial $s^2 + s + 2$, hence 2 complexvalued eigenvalues with negative real part, i.e. **stable focus**.

- Case $x^0 = (0, -2)$:

$$\frac{\partial f}{\partial x}(x^0) = \begin{bmatrix} -3 & -2\\ 1 & 0 \end{bmatrix}$$

which has the characteristic polynomial $s^2 + 3s + 2$, hence 2 negative real-valued eigenvalues, i.e. **stable node**.

- Case
$$x^0 = (-\frac{1}{2}, -\frac{1}{2})$$
:

$$\frac{\partial f}{\partial x}(x^0) = \frac{1}{2} \begin{bmatrix} -3 & 1\\ 1 & 1 \end{bmatrix}$$

which has the characteristic polynomial $s^2 + 2s - 4$, hence 2 real-valued eigenvalues, 1 negative and 1 positive, i.e. **saddle point**.

2. Consider the control system

$$\ddot{x} - 2(\dot{x})^2 + x = u - 1$$

- **a.** Write the system in state-space form. (1 p)
- **b.** Suppose $u(t) \equiv 0$. Find all equilibria and determine if they are stable or asymptotically stable if possible. (2 p)
- **c.** Show that Eq. (2) is satisfied by the periodic solution x(t) = cos(t), u(t) = cos(2t). Linearize the system around this solution. (2 p)
- **d.** Design a state-feedback controller $u = u(x, \dot{x})$ for (2), such that the origin of the closed loop system is globally asymptotically stable. (1 p)

Solution

a. Introduce $x_1 = x$, $x_2 = \dot{x}$

$$\dot{x}_1 = x_2 \dot{x}_2 = -x_1 + 2x_2^2 + u - 1$$
 (1)

b. Let $\dot{x}_1 = \dot{x}_2 = 0 \Rightarrow (x_1, x_2) = (-1, 0)$ is the only equilibrium. The linearization around this point is

$$A = egin{bmatrix} 0 & 1 \ -1 & 4x_2 \end{bmatrix}_{(x_1^o,x_2^o)=(-1,0)} = egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} \quad B = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

The characteristic equation for the linearized system is $s^2 + 1 = 0 \Rightarrow s = \pm i$. We can not conclude stability of the nonlinear system from this.

c.

$$x = \cos(t) \Rightarrow \dot{x} = -\sin(t) \Rightarrow \ddot{x} = -\cos(t)$$

By inserting this in the system dynamics and using e.g., $u = \cos(2t) = \cos^2(t) - \sin^2(t) = 2\cos^2(t) - 1$ we get

$$\ddot{x} - 2(\dot{x})^2 + x = -\cos(t) - 2\sin^2(t) + \cos(t) = 2 + \cos^2(t) - 2 = u - 1$$

which shows that the trajectory is a solution.

The linearized system is thus

$$\begin{split} \delta \dot{x} &= \begin{bmatrix} 0 & 1 \\ -1 & 4x_2 \end{bmatrix}_{(x_1^o, x_2^o) = (\cos(t), -\sin(t))} \delta x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \delta u \\ &= \begin{bmatrix} 0 & 1 \\ -1 & -4\sin(t) \end{bmatrix} \delta x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \delta u \end{split} \tag{2}$$

3

where

$$\delta x = \begin{bmatrix} x_1(t) - \cos(t) \\ x_2(t) - (-\sin(t)) \end{bmatrix}, \quad \delta u = u(t) - \cos(2t)$$

d. The simplest way is to cancel the constant term and the nonlinearity with the control signal and introduce some linear feedback.

$$u = +1 - 2(\dot{x}_2)^2 - a\dot{x}, \quad a > 0 \Rightarrow \ddot{x} + a\dot{x} + x = 0$$

As the resulting system is linear and time invariant with poles in the left half plane for all a > 0 it is GAS.

3. A nonlinear system is given below.

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -3x_2 - x_2^3 - x_1$

Show that the origin is globally asymptotically stable using the Lyapunov function candidate $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$. (3 p)

Solution

$$\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2 = -3x_2^2 - x_2^4 - x_1 x_2 + x_1 x_2 \le 0$$

We need to use LaSalle's theorem. The set E, where V = 0, is the set of all points where $x_2 = 0$. To use LaSalle's theorem, we need to find M, the set of points that not only are in E, but also stay there. Hence M consists of points where not only $x_2 = 0$, but also $\dot{x}_2 = 0$. This means that $M = \{(0,0)\}$, so LaSalle's theorem gives that the origin is globally asymptotically stable.

4. A linear time-invariant system G(s) is feedback interconnected with the nonlinear function -bf(y) according to Figure 1.

$$G(s) = rac{1}{(s+1)(s+2)}$$

and *b* is a positive constant. The nonlinear function $f(y) = \sin(y)$ is shown in Figure 2, and the Nyquist curve of $G(i\omega)$ in Figure 3.

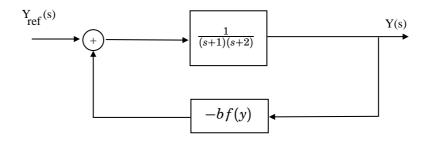


Figure 1 The block diagram for Problem 4(a)

Determine the largest value of b for which global asymptotic stability for the closed loop system is implied by:

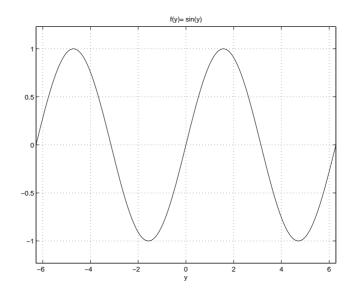


Figure 2 The nonlinear function $f(y) = \sin(y)$ in Problem 4 (a)

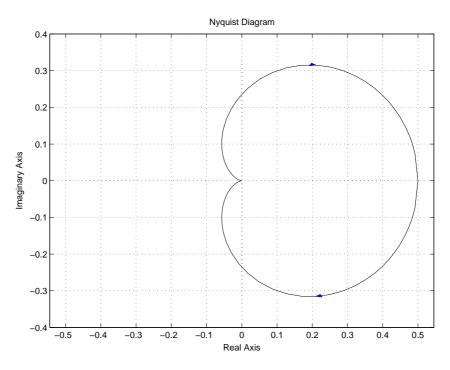


Figure 3 The Nyquist curve for Problem 4 (a)

- **a.** The Small Gain Theorem (1.5 p)
- **b.** the Circle Criterion (1.5 p)

Solution

a. The maximum gain of G(s) can be determined from both the transfer function and the nyquist plot, and it is 0.5. The maximum gain of the non-linearity is 1, given by the derivative of f(y) = sin(y). Thus, it follows

that b < 2 in order to guarantee stability using the Small Gain Theorem $(||f(y)||_{\infty} \cdot ||G(i\omega)||_{\infty} < 1).$

b. The nonlinearity is contained within two sectors, given by graphically to $k_1 = -0.22$ and $k_2 = 1$. The circle criterion then guarantees stability if the nyquist curve is contained within the circle that passes through the points $-1/k_1$ and $-1/k_2$. It can be seen from the nyquist curve that the maximum possible radius of the circle is approx. 0.31, and since the circle radius is calculated as $r = (\frac{1}{k_2} - \frac{1}{k_1})/2b$, the maximum *b* is given by approx 9 (Fig. 4.

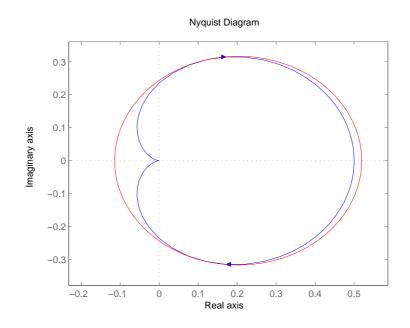


Figure 4 Circle criterion

5. Consider the system

$$\frac{\mathrm{d}^3 \mathrm{z}}{\mathrm{d}t^3} + \frac{\mathrm{d}^2 \mathrm{z}}{\mathrm{d}t^2} + \frac{\mathrm{d} \mathrm{z}}{\mathrm{d}t} = -\frac{1}{3}z^3$$

a. Show that the system can be written as a feedback connection as shown in Figure 5, where P(s) is a transfer function and ψ is a static nonlinearity. (1 p)

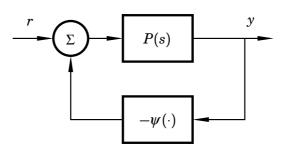


Figure 5 Figure for Problem 5

- **b.** Calculate the describing function of the nonlinearity $\psi(x) = \frac{1}{3}x^3$. (2 p) (*Hint*: $\int_0^{2\pi} \sin(x)^4 dx = \frac{3\pi}{4}$)
- **c.** Using the describing function method, analyze the existence, amplitude and frequency of possible limit cycles. (2 p)

Solution

a. Let $\psi = 1/3z^3$. Then a Laplace transform between ψ and z results in

$$P = \frac{1}{s(s^2 + s + 1)}.$$

The nonlinearity is $\psi = 1/3z^3$.

b. The function is odd, which implies that it is real.

$$b_1 = \frac{A^3}{3\pi} \int_0^{2\pi} \sin(\phi)^4 \mathrm{d}\phi = \frac{A^3}{4},$$

which gives that the describing function

$$N(A) = \frac{A^2}{4}.$$

c. We want to find out the points where $\text{Im}P(i\omega) = 0$. Some calculations gives that

$$\operatorname{Im} P(i\omega) = \frac{-(1-\omega^2)}{\omega((1-\omega^2)^2+\omega^2)},$$

which in its turn gives that $\omega = 1$. Finally, this yields that

$$P(i) = -1 = -\frac{1}{N(A)} = -\frac{4}{A^2} \Rightarrow A = 2.$$

To conclude: The frequency of the limit cycle is $\omega = 1$ rad/s and its amplitude is A = 2.

6. Consider the system below:

$$\dot{x} = -3x + u - \phi(x)$$
$$y = x$$

where ϕ is given by:

$$\phi(z) = z^5$$

Is the system BIBO stable from u to y? Hint: Try proving passivity or using the Circle Criterion. (3 p)

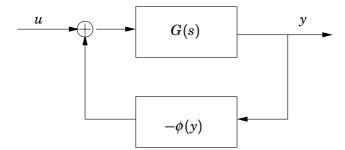


Figure 6 A linear system in feedback with a nonlinearity

Solution

We start by decomposing the system into one linear system in negative feedback with the nonlinaerity ϕ . See Figure 6.

ALT1. Circle criterion

ALT2. The transfer function G is given by:

$$G(s) = \frac{1}{s+3}$$

which is strictly passive since

$$\operatorname{Re}G(j\omega-\epsilon) = \operatorname{Re}rac{1}{j\omega-\epsilon+3} = \cdots = rac{3-\epsilon}{\omega^2+(3-\epsilon)^2} > 0$$

 $\forall \omega > 0$, and e.g. $\epsilon = 1. \phi$ satisfies

$$z\phi(z)=z^6\geq 0,\quad \forall z$$

and is therefore passive. BIBO stability then follows from the passivity theorem.

Note that the small gain theorem is not applicible in this case since gain of ϕ is not bounded.

7. A body under influence of a force obeys the equation

$$m\ddot{x} = F$$
, $F_{\min} \leq F \leq F_{\max}$.

Assume for simplicity that m = 1, $F_{\min} = -1$, $F_{\max} = 1$, and put F = u. Use Pontryagin's Maximum Principle to determine the optimal control u(t) which allows the body to reach a rest in the origin in the shortest possible time, when starting from an arbitrary state $(x(0), \dot{x}(0))$. Specify whether the problem is normal or abnormal. (4 p)

Solution

The equations of motion are

$$\dot{x}_1 = x_2, \quad x_1(0) = x_0, \quad x_1(T) = 0,$$

 $\dot{x}_2 = u, \quad x_2(0) = v_0, \quad x_2(T) = 0,$
 $u \in [-1, 1].$

The problem to solve is

$$\min\int_0^T 1\mathrm{d}t.$$

The Hamilton function for the normal case $(n_o = 1)$ is

$$H = 1 + \lambda_1 x_2 + \lambda_2 u,$$

which implies that the adjoint equations are

$$\dot{\lambda}_1 = -rac{\partial H}{\partial x_1} = 0, \Rightarrow \lambda_1 = \lambda_1^0,$$

 $\dot{\lambda}_2 = -rac{\partial H}{\partial x_2} = -\lambda_1, \Rightarrow \lambda_2 = \lambda_2^0 - \lambda_1^0 t.$

From this it follows that the control signal only changes sign at most once. Depending on the initial conditions, the expression for the optimal control trajectory is then either

$$u(t) = \begin{cases} 1 & , & 0 \le t \le t_1 \\ -1 & , & t_1 < t \le t_f \end{cases}$$

or

$$u(t) = \begin{cases} -1 & , & 0 \le t \le t_1 \\ 1 & , & t_1 < t \le t_f \end{cases}$$

where t_1 is the switching time and t_f is the final time. The solution to the state equations stated earlier is given by

$$x(t_f) = e^{A_c t_f} x(0) + \int_0^{t_f} e^{A_c(t_f - \tau)} B_c u(\tau) d\tau$$
(3)

where for this problem

$$A_c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B_c = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, e^{A_c t} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix},$$

For the case of positive control signal first, simplify the state equation solution:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x_0 \\ v_0 \end{pmatrix} + \int_0^{t_1} \begin{pmatrix} t_f - \tau \\ 1 \end{pmatrix} d\tau - \int_{t_1}^{t_f} \begin{pmatrix} t_f - \tau \\ 1 \end{pmatrix} d\tau = \begin{pmatrix} x_0 \\ v_0 \end{pmatrix} + \begin{pmatrix} 2t_f t_1 - t_1^2 - t_f^2/2 \\ 2t_1 - t_f . \end{pmatrix}$$

$$(4)$$

The system above admits a solution (t_1, t_f) with $0 < t_1 < t_f$ if and only if

$$\frac{v_0^2}{2} - x_0 > 0, \qquad v_0 + \sqrt{\frac{v_0^2}{2} - x_0} > 0,$$

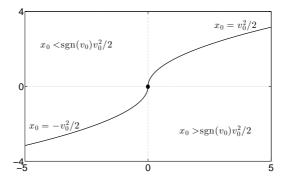


Figure 7 Phase plane for problem 7.

that is, if and only if

$$x_0 < \operatorname{sign}(v_0) \frac{v_0^2}{2}.$$

If the above is satisfied, equation (4) is solved by

$$t_1 = \sqrt{\frac{v_0^2}{2} - x_0}, \qquad t_f = 2t_1 + v_0.$$

Similar calculations for the second case where u(t) starts as -1 give

$$t_1 = \sqrt{\frac{v_0^2}{2} + x_0}, \qquad t_f = 2t_1 - v_0,$$

provided that $\frac{v_0^2}{2} + x_0 > 0$ and $t_f > t_1$, that is

$$x_0 > \operatorname{sign}(v_0) \frac{v_0^2}{2}$$

The case when $v_0 > 0$ and $x_0 = v_0^2/2$ can be treated as the first one with $t_0 = 0$ and $t_f = v_0$, that is, with the constant control $u(t) \equiv -1$. Symmetrically, the case $v_0 < 0$ and $x_0 = -v_0^2/2$ can be treated as the second one with $t_0 = 0$ and $t_f = -v_0$, that is, with the constant control $u(t) \equiv 1$. If $x_0 = v_0 = 0$, clearly $t_f = 0$ (we are starting already at rest in 0). See Fig.?? for a plot of the different regions in the (x_0, v_0) -plane. The answer is thus

$$u(t) = \begin{cases} 1 & , \ 0 \le t \le \sqrt{\frac{v_0^2}{2} - x_0} & \text{if } x_0 < \operatorname{sgn}(v_0)v_0^2/2 \\ -1 & , \ \sqrt{\frac{v_0^2}{2} - x_0} < t \le 2\sqrt{\frac{v_0^2}{2} - x_0} + v_0 & \text{if } x_0 < \operatorname{sgn}(v_0)v_0^2/2 \\ u(t) = \begin{cases} -1 & , \ 0 \le t \le \sqrt{\frac{v_0^2}{2} + x_0} & \text{if } x_0 > \operatorname{sgn}(v_0)v_0^2/2 \\ 1 & , \ \sqrt{\frac{v_0^2}{2} + x_0} < t \le 2\sqrt{\frac{v_0^2}{2} + x_0} - v_0 & \text{if } x_0 > \operatorname{sgn}(v_0)v_0^2/2 \\ u(t) = -1 & 0 \le t \le v_0 & \text{if } x_0 = v_0^2/2, \ v_0 > 0 \end{cases}$$

u(t) = 1 $0 \le t \le -v_0$ if $x_0 = -v_0^2/2$, $v_0 < 0$.

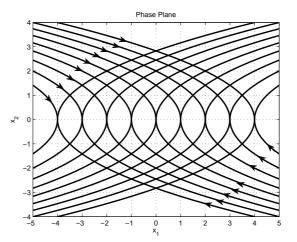


Figure 8 Phase plane for problem 7.

Graphical interpretation

Using

$$\frac{\mathrm{d}x_1}{\mathrm{d}x_2} = \frac{x_2}{u}, \Rightarrow x_1 = \frac{x_2^2}{2u} + C$$

the switching curve can be decided (C = 0 since the desired endpoint is the origin), and is given by

$$x_1 + \operatorname{sign}(x_2)(x_2^2/2) = 0,$$
 (5)

This implies that the control signal can be written as

$$u(t) = -\operatorname{sign}(x_1 + \operatorname{sign}(x_2)(x_2^2/2)).$$

A phase plane is shown in Figure 7.

Since a solution to the normal case was found, the problem can be concluded to be normal.