
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam  April 5, 2013 at 14–19

Points and grades

All answers must include a clear motivation. The total number of points is 28. The

maximum number of points is specified for each subproblem. Most subproblems

can be solved independently of each other. Preliminary grades:

3: 13− 17.5 points

4: 18− 23.5 points

5: 24− 28 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be used

as well as standard mathematical tables and authorized “Formelsamling i re-

glerteknik”. Pocket calculator.

Good Luck!
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1. Find and classify all three equilibrium points of the system

ẋ1 = −x1 + 2x2 + x1x2 + x
2
2

ẋ2 = −x1 − x
2
1 − x1x2

(4 p)

Solution
The equation system that should be solved is

0 = −x1 + 2x2 + x1x2 + x
2
2

0 = −x1 − x
2
1 − x1x2

The second equation gives

x1(−x1 − 1− x2) = 0Z[ x1 = 0 or x2 = −x1 − 1

- Case x1 = 0:
The first equation now gives

x2(x2 + 2) = 0Z[ x2 = 0 or x2 = −2

That is, equilibria (0, 0) and (0,−2).

- Case x2 = −x1 − 1:
Now, putting x2 = −x1 − 1 into the first equation and simplifying

−2x1 − 1 = 0Z[ x1 = −
1

2
, x2 = −

1

2

That is, equilibrium (−1
2
,−1
2
).

To classify each equilibrium, the Jacobian is determined

� f

�x
=

[

−1+ x2 2+ x1 + 2x2

−1− 2x1 − x2 −x1

]

- Case x0 = (0, 0):

� f

�x
(x0) =

[

−1 2

−1 0

]

which has the characteristic polynomial s2 + s + 2, hence 2 complex-
valued eigenvalues with negative real part, i.e. stable focus.

- Case x0 = (0,−2):

� f

�x
(x0) =

[

−3 −2

1 0

]

which has the characteristic polynomial s2 + 3s + 2, hence 2 negative
real-valued eigenvalues, i.e. stable node.
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- Case x0 = (−1
2
,−1
2
):

� f

�x
(x0) =

1

2

[

−3 1

1 1

]

which has the characteristic polynomial s2+2s−4, hence 2 real-valued
eigenvalues, 1 negative and 1 positive, i.e. saddle point.

2. Consider the control system

ẍ − 2(ẋ)2 + x = u− 1

a. Write the system in state-space form. (1 p)

b. Suppose u(t) " 0. Find all equilibria and determine if they are stable or
asymptotically stable if possible. (2 p)

c. Show that Eq. (2) is satisfied by the periodic solution x(t) = cos(t), u(t) =
cos(2t). Linearize the system around this solution. (2 p)

d. Design a state-feedback controller u = u(x, ẋ) for (2), such that the origin
of the closed loop system is globally asymptotically stable. (1 p)

Solution

a. Introduce x1 = x, x2 = ẋ

ẋ1 = x2

ẋ2 = −x1 + 2x
2
2 + u− 1

(1)

b. Let ẋ1 = ẋ2 = 0[ (x1, x2) = (−1, 0) is the only equilibrium. The lineariza-
tion around this point is

A =

[

0 1

−1 4x2

]

(xo
1
, xo
2
)=(−1,0)

=

[

0 1

−1 0

]

B =

[

0

1

]

The characteristic equation for the linearized system is s2+1 = 0[ s = ±i.
We can not conclude stability of the nonlinear system from this.

c.

x = cos(t) [ ẋ = − sin(t) [ ẍ = − cos(t)

By inserting this in the system dynamics and using e.g., u = cos(2t) =
cos2(t) − sin2(t) = 2 cos2(t) − 1 we get

ẍ − 2(ẋ)2 + x = − cos(t) − 2 sin2(t) + cos(t) = 2+ cos2(t) − 2 = u− 1

which shows that the trajectory is a solution.

The linearized system is thus

δ ẋ =

[

0 1

−1 4x2

]

(xo
1
, xo
2
)=(cos(t),− sin(t))

δ x +

[

0

1

]

δu

=

[

0 1

−1 −4 sin(t)

]

δ x +

[

0

1

]

δu

(2)
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where

δ x =

[

x1(t) − cos(t)

x2(t) − (− sin(t))

]

, δu = u(t) − cos(2t)

d. The simplest way is to cancel the constant term and the nonlinearity with

the control signal and introduce some linear feedback.

u = +1− 2(ẋ2)
2 − aẋ, a > 0[ ẍ + aẋ + x = 0

As the resulting system is linear and time invariant with poles in the left

half plane for all a > 0 it is GAS.

3. A nonlinear system is given below.

ẋ1 = x2

ẋ2 = −3x2 − x
3
2 − x1

Show that the origin is globally asymptotically stable using the Lyapunov

function candidate V (x) = 1
2
x21 +

1
2
x22. (3 p)

Solution

V̇ = x1 ẋ1 + x2 ẋ2 = −3x
2
2 − x

4
2 − x1x2 + x1x2 ≤ 0

We need to use LaSalle’s theorem. The set E, where V̇ = 0, is the set of all
points where x2 = 0. To use LaSalle’s theorem, we need to find M , the set
of points that not only are in E, but also stay there. Hence M consists of

points where not only x2 = 0, but also ẋ2 = 0. This means that M = {(0, 0)},
so LaSalle’s theorem gives that the origin is globally asymptotically stable.

4. A linear time-invariant system G(s) is feedback interconnected with the
nonlinear function −b f (y) according to Figure 1.

G(s) =
1

(s+ 1)(s+ 2)

and b is a positive constant. The nonlinear function f (y) = sin(y) is shown
in Figure 2, and the Nyquist curve of G(iω ) in Figure 3.

+
Y(s)

Y    (s)ref
1

(s+1)(s+2)

−b f (y)

Figure 1 The block diagram for Problem 4(a)

Determine the largest value of b for which global asymptotic stability for

the closed loop system is implied by:
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f(y)= sin(y)

Figure 2 The nonlinear function f (y) = sin(y) in Problem 4 (a)

Nyquist Diagram
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Figure 3 The Nyquist curve for Problem 4 (a)

a. The Small Gain Theorem (1.5 p)

b. the Circle Criterion (1.5 p)

Solution

a. The maximum gain of G(s) can be determined from both the transfer func-
tion and the nyquist plot, and it is 0.5. The maximum gain of the non-

linearity is 1, given by the derivative of f (y) = sin(y). Thus, it follows
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that b < 2 in order to guarantee stability using the Small Gain Theorem
(pp f (y)pp∞ ⋅ ppG(iω )pp∞ < 1).

b. The nonlinearity is contained within two sectors, given by graphically to

k1 = −0.22 and k2 = 1. The circle criterion then guarantees stability if the
nyquist curve is contained within the circle that passes through the points

−1/k1 and −1/k2. It can be seen from the nyquist curve that the maximum
possible radius of the circle is approx. 0.31, and since the circle radius is

calculated as r = ( 1
k2
− 1
k1
)/2b, the maximum b is given by approx 9 (Fig. 4.
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Figure 4 Circle criterion

5. Consider the system

d3z

dt3
+
d2z

dt2
+
dz

dt
= −
1

3
z3

a. Show that the system can be written as a feedback connection as shown in

Figure 5, where P(s) is a transfer function and ψ is a static nonlinearity.
(1 p)

Σ

yr

P(s)

−ψ (⋅)

Figure 5 Figure for Problem 5
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b. Calculate the describing function of the nonlinearity ψ (x) = 1
3
x3. (2 p)

(Hint:
∫ 2π
0
sin(x)4dx = 3π

4
)

c. Using the describing function method, analyze the existence, amplitude and

frequency of possible limit cycles. (2 p)

Solution

a. Let ψ = 1/3z3. Then a Laplace transform between ψ and z results in

P =
1

s(s2 + s+ 1)
.

The nonlinearity is ψ = 1/3z3.

b. The function is odd, which implies that it is real.

b1 =
A3

3π

∫ 2π

0

sin(φ)4dφ =
A3

4
,

which gives that the describing function

N(A) =
A2

4
.

c. We want to find out the points where ImP(iω ) = 0. Some calculations gives
that

ImP(iω ) =
−(1−ω 2)

ω ((1−ω 2)2 +ω 2)
,

which in its turn gives that ω = 1. Finally, this yields that

P(i) = −1 = −
1

N(A)
= −

4

A2
[ A = 2.

To conclude: The frequency of the limit cycle is ω = 1 rad/s and its ampli-
tude is A = 2.

6. Consider the system below:

ẋ = −3x + u− φ(x)

y = x

where φ is given by:
φ(z) = z5

Is the system BIBO stable from u to y? Hint: Try proving passivity or using

the Circle Criterion. (3 p)
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G(s)

−φ(y)

u y

Figure 6 A linear system in feedback with a nonlinearity

Solution

We start by decomposing the system into one linear system in negative

feedback with the nonlinaerity φ . See Figure 6.

ALT1. Circle criterion

ALT2. The transfer function G is given by:

G(s) =
1

s+ 3

which is strictly passive since

ReG( jω − ǫ) = Re
1

jω − ǫ+ 3
= ⋅ ⋅ ⋅ =

3− ǫ

ω 2 + (3− ǫ)2
> 0

∀ω > 0, and e.g. ǫ = 1. φ satisfies

zφ(z) = z6 ≥ 0, ∀z

and is therefore passive. BIBO stability then follows from the passivity

theorem.

Note that the small gain theorem is not applicible in this case since gain of

φ is not bounded.

7. A body under influence of a force obeys the equation

mẍ = F, Fmin ≤ F ≤ Fmax.

Assume for simplicity that m = 1, Fmin = −1, Fmax = 1, and put F = u.
Use Pontryagin’s Maximum Principle to determine the optimal control u(t)
which allows the body to reach a rest in the origin in the shortest possible

time, when starting from an arbitrary state (x(0), ẋ(0)). Specify whether
the problem is normal or abnormal. (4 p)

Solution

The equations of motion are

ẋ1 = x2, x1(0) = x0, x1(T) = 0,

ẋ2 = u, x2(0) = v0, x2(T) = 0,

u ∈ [−1, 1].
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The problem to solve is

min

∫ T

0

1dt.

The Hamilton function for the normal case (no = 1) is

H = 1+ λ1x2 + λ2u,

which implies that the adjoint equations are

λ̇1 = −
�H

�x1
= 0, [ λ1 = λ01,

λ̇2 = −
�H

�x2
= −λ1, [ λ2 = λ02 − λ01t.

From this it follows that the control signal only changes sign at most once.

Depending on the initial conditions, the expression for the optimal control

trajectory is then either

u(t) =

{

1 , 0 ≤ t ≤ t1

−1 , t1 < t ≤ t f

or

u(t) =

{

−1 , 0 ≤ t ≤ t1

1 , t1 < t ≤ t f

where t1 is the switching time and t f is the final time.

The solution to the state equations stated earlier is given by

x(t f ) = e
Act f x(0) +

∫ t f

0

eAc(t f−τ )Bcu(τ )dτ (3)

where for this problem

Ac =









0 1

0 0








, Bc =









0

1








, eAct =









1 t

0 1 .








,

For the case of positive control signal first, simplify the state equation so-

lution:









0

0








=









x0

v0








+

∫ t1

0









t f − τ

1








dτ −

∫ t f

t1









t f − τ

1








dτ

=









x0

v0








+









2t f t1 − t
2
1 − t

2
f /2

2t1 − t f .









(4)

The system above admits a solution (t1, t f ) with 0 < t1 < t f if and only if

v20
2
− x0 > 0 , v0 +

√

v20
2
− x0 > 0 ,
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−5 0 5
−4

0

4

x0 <sgn(v0)v
2
0/2

x0 >sgn(v0)v
2
0/2

x0 = −v2
0/2

x0 = v2
0/2

Figure 7 Phase plane for problem 7.

that is, if and only if

x0 < sign(v0)
v20
2
.

If the above is satisfied, equation (4) is solved by

t1 =

√

v20
2
− x0 , t f = 2t1 + v0 .

Similar calculations for the second case where u(t) starts as −1 give

t1 =

√

v20
2
+ x0 , t f = 2t1 − v0 ,

provided that
v2
0

2
+ x0 > 0 and t f > t1, that is

x0 > sign(v0)
v20
2
.

The case when v0 > 0 and x0 = v
2
0/2 can be treated as the first one with t0 =

0 and t f = v0, that is, with the constant control u(t) " −1. Symmetrically,
the case v0 < 0 and x0 = −v

2
0/2 can be treated as the second one with t0 = 0

and t f = −v0, that is, with the constant control u(t) " 1. If x0 = v0 = 0,
clearly t f = 0 (we are starting already at rest in 0). See Fig.?? for a plot of
the different regions in the (x0,v0)-plane.

The answer is thus

u(t) =







1 , 0 ≤ t ≤

√

v2
0

2
− x0

−1 ,

√

v2
0

2
− x0 < t ≤ 2

√

v2
0

2
− x0 + v0

if x0 < sgn(v0)v
2
0/2

u(t) =







−1 , 0 ≤ t ≤

√

v2
0

2
+ x0

1 ,

√

v2
0

2
+ x0 < t ≤ 2

√

v2
0

2
+ x0 − v0

if x0 > sgn(v0)v
2
0/2

u(t) = −1 0 ≤ t ≤ v0 if x0 = v
2
0/2 , v0 > 0

u(t) = 1 0 ≤ t ≤ −v0 if x0 = −v
2
0/2 , v0 < 0 .
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Figure 8 Phase plane for problem 7.

Graphical interpretation

Using

dx1

dx2
=
x2

u
,[ x1 =

x22
2u
+ C

the switching curve can be decided (C = 0 since the desired endpoint is the
origin), and is given by

x1 + sign(x2)(x
2
2/2) = 0, (5)

This implies that the control signal can be written as

u(t) = −sign(x1 + sign(x2)(x
2
2/2)).

A phase plane is shown in Figure 7.

Since a solution to the normal case was found, the problem can be concluded

to be normal.
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