Lecture 2

> Linearization
> Stability definitions
» Stability and controllability from linearization

» Simulation in Matlab/Simulink

Material

» Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3)

> Lecture slides

Today’s Goal

To be able to

» linearize, both around equilibria and trajectories
> explain definitions of stability
» check local stability and local controllability at equilibria

» simulate in Simulink

Linearization Around a Trajectory

Idea: Make Taylor-expansion around a known solution {z*(t), u*(t)}.

Let
- F(@™(t),u™ ()
be a known solution.

How will a small deviation {Z, %} from this solution behave?
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Linearization Around a Trajectory

§=C)i+D(t)i

{‘2’: = J(w,u) {3 = A(D)# + B(t)i
y = h(z,u)
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Linearization Around a Trajectory, cont.

Let (z*(t),u*(t)) denote a solution to & = f(x,u) and consider
another solution (z(t), u(t)) = (x*(t) + &(t), u*(t) + a(t)):

(1) = f(a" (1) + 2(8), u" (1) + alt))

= f@" (), v (1) + %(z*(t),u*(t))i(t) + 5@ (0wt ()a(t) + Oz, al|)
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(@ () + &(1), w* () + (1))

State-space form

Hence, for small (&, @), approximately
E(t) = A(t)E(t) + B(t)a(t)

where (if dim z = 2, dim v = 1)

of on on
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Note that A and B are time dependent! However, if we don't
linearize around a trajectory but linearize around an equilibrium
point (z*(t),u*(t)) = (z*,u*) then A and B are constant.

Linearization, cont’d

The linearization of the output equation
y(t) = h(z(t), u(t))
around the nominal output y*(t) = h(z*(t),u*(t)) is given by
4(t) = C(1)Z(t) + D(t)u(t)

where (if dim y = dim 2 = 2, dim u = 1)
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Example - Linearization around equilibrium point

The linearization of
#(t) = %sinx(t)

around the equilibrium z* = nr is given by

i) = %sin(mr i) ~ %(—1)%@)




Example: Rocket

Outline

h(t) = v(t)
8(t) = g + Sy

A N m(t) = —u(t)

h(t)
h*(t)
Let u*(t) =u* > 0; z*(t)=| v*(t) |; m*(¢t) =m* —u*t.
m* (1)
01 0 0
Linearization: Z(t)= | 0 0 % )+ | wrm | al)
00 0 -1
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> Stability definitions
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Local Stability

Asymptotic Stability

Consider & = f(z) where f(z*) =0

Definition The equilibrium z* is stable if, for any R > 0, there
exists r > 0, such that

[(0) —z*|| <r = |lz(t)—2a*| <R, forallt>0

Otherwise the equilibrium point x* is unstable.

x(t

Definition The equilibrium 2* is locally asymptotically stable
(LAS) if it

1) is stable
2) there exists r > 0 so that if ||2(0) — 2*|| < r then

z(t) — 2*  as ¢t —> o0.

(PhD-exercise: Show that 1) does not follow from 2))

Global Asymptotic Stability

Definition The equilibrium is said to be globally asymptotically
stable (GAS) if it is LAS and for all z(0) one has

x(t) = a* as t — oo.
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» Simulation in Matlab/Simulink

Lyapunov’s Linearization Method

Theorem Assume
&= f(z)
has the linearization
Do) — o) = Alw(t) — o)
dt N

around the equilibrium point z* and put

a(A) = maxRe(A(A4))

> If a(A) <0, then & = f(x) is LAS at z*,
> If a(A) > 0, then & = f(x) is unstable at z*,

> If a(A) =0, then no conclusion can be drawn.

(Proof in Lecture 4)

Example

The linearization of

i1 = —a? 41 +sin(22)

T cos(zg) — x5 — 5xy

. (1 . (-1 1
at z* = [0] gives A = [73 75]
Eigenvalues are given by the characteristic equation
0=det(A\] —A)=A+1)(A+5)+3

This gives A = {—2, —4}, which are both in the left half-plane,
hence the nonlinear system is LAS around x*.




Local Controllability

Theorem Assume
&= f(z,u)

has the linearization
dz
dt
around the equilibrium (z*,u*) then the nonlinear system is locally
controllable provided that (A, B) controllable.

= AZ + Bu

Here local controllability is defined as follows:

For every T >0 and € > 0 the set of states x(T') that can be
reached from x(0) = x*, by using controls satisfying
lu(t) — u*|| < e, contains a small ball around x*.

5 minute exercise:

Is the ball and beam
. . i o .
i=ax¢*+gsing + Eqﬁ

nonlinearly locally controllable around
¢=¢=x=x=0 (with ¢ as input)?

Remark: This is a bit more detailed model of the ball and beam than we saw in
Lecture 1.
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Example

An inverted pendulum with vertically moving pivot point

|

Bt) = 7 {9+ u(t)) sin(o(1),

where u(t) is acceleration, can be written as

.’i?l = X2
1 .
g = 7 (9 + ) sin(x1)

Example, cont.

The linearization around z; = 22 = 0,u = 0 is given by

1 = @2
. g
Tro9 = 7:1?1

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by

2

u(t) = ew” sin(wt)

if w is large enough !

We will come back to this example later.

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

Tpr = flzk)
is asymptotically stable at 2* if the linearization

of

=—| has all eigenvalues in |\| <1
0x |z~

(that is, within the unit circle).

Example (cont'd): Numerical iteration

T = f(og)

to find fixed point
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Simulation
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> Simulation in Matlab/Simulink

Often the only method

&= f(z)
> ACSL
> Simnon
> Simulink
F(i,2)=0
» Omsim
» Dymola
» Modelica (www.modelica.org)
Special purpose
> Spice (electronics)
» EMTP (electromagnetic transients)
» Adams (mechanical systems)

Simulink

M) simulink Library Browser o [s1 4

Fle Edt View Help

D&

Continuous: simulirk3/Conlinucus

[ = W Simulink
8] Continuous
8] Diserets

%] Functions & Tables Discrete.
23] Math

> matlab 2] Noninear Functons & Tables
2] Signals & Systems

>> simulink & sris Mah

8] sources
2] subsystems
B COMA Reference Blackset
B Commurications Blockset
T Control System Toslbox
B D5P Blackset

B Developer's Ki for T1D5P

Nenliear
Signals & Systems

Sirks
B Disls & Gauges Blockset
B Fixed-Point Blockset
B Fuzzy Logic Toobox
B 1PC Blocks

T8 Mokorola DSP Blnckset

Saurces

Subspstems

Ready

Simulink, An Example

File -> New -> Model
Double click on Continuous
Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)
Simulation->Parameters

A 4

| = -

Step Transfer Fen Scope

Choose Simulation Parameters

|2 Simulation parameters: untitled | .|
SO\Vel’l orkspace IJ'EI| D\agnns(lcsl F(TWl RTW Extemall

Simulation time

Start time: (0.0 Stap tine: [50 |

Solver options

Type: Varizhie=step | wele4S {Darmant -Prince) =

Maxx step size: |auto Felative tolerance: | 18-3
Initial step size: |auto 2hsolute tolerance: | 166

Dutput options

[ Fiefine output = Fiefine factor: |1 |
Apply Fievert Help Close

Don't forget “Apply”

Save Results to Workspace

Clock To Workspace1

00 — y
s+1

Signal Transfer Fen To Workspace
Generator

Check “Save format” of output blocks (“Array” instead of “Structure”)

>> plot(t,y)

(or use “Structure” which also contains the time information.)

How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration
method

Refine adds interpolation points:

Foine - 1 Feine - 10

Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open_system(’stepmodel’)
set_param(’stepmodel’,’RelTol’,’1e-3’)
set_param(’stepmodel’,’AbsTol’,’1le-6)
set_param(’stepmodel’,’Refine’,’1’)
tic

sim(’ stepmodel’,6)

toc
subplot(2,1,1),plot(t,y),title(’y’)
subplot(2,1,2) ,plot(t,u),title(’u’)




Submodels, Example: Water tanks

Equation for one water tank:

h = (u—q)/A
q = a\/2gVh

Corresponding Simulink model:

Out

Subsystem2

Subsystem

Linearization in Simulink

Use the command trim to find e.g., stationary points to a system
>> A=2.7e-3;a=7e-6,g8=9.8;

>> % Example to find input u for desired states/output
>> [x0,u0,y0]=trim(’flow’,[0.1 0.1]°,[1,0.1)
x0 =
0.1000
0.1000
uo =
8.3996e-06
yo =
0.1000

Linearization in Simulink, cont.

Use the command linmod to find a linear approximation of the
system around an operating point:

>> [aa,bb,cc,dd]=1linmod (’flow’,x0,u0);
>> sys=ss(aa,bb,cc,dd);
>> bode(sys)

Linearization in Simulink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

it

Start a “Control and Estimation Tool Manager” to get a linearized model
by

Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to
Workspace (Model-; Export to Workspace) and much more.

Computer exercise

Simulation of JAS 39 Gripen

g

pilot 1

plane
dynamics

referonce

prefiter

uplot

> Simulation
> Analysis of PIO using describing functions

> Improve design

Summary

» Linearization, both around equilibria and trajectories
> Definitions of local and global stability

» Check local stability and local controllability at equilibria
» Simulation tool in this course: Simulink

Next: Lecture 3

v

Phase plane analysis

v

Classification of equilibria




