

Local Controllability

Theorem Assume

has the linearization

$$\frac{d\tilde{x}}{dt} = A\tilde{x} + B\tilde{u}$$

around the equilibrium (x^{\ast},u^{\ast}) then the nonlinear system is $\mathit{locally}$ controllable provided that (A,B) controllable.

 $\dot{x} = f(x, u)$

Here local controllability is defined as follows:

For every T > 0 and $\varepsilon > 0$ the set of states x(T) that can be reached from $x(0) = x^*$, by using controls satisfying $||u(t) - u^*|| < \varepsilon$, contains a small ball around x^* .

okmarks <u>T</u>ools <u>W</u>indow <u>H</u>elp

Example

An inverted pendulum with vertically moving pivot point

$$\ddot{\phi}(t) = \frac{1}{t} \left(g + \boldsymbol{u}(t) \right) \sin(\phi(t)),$$

where u(t) is acceleration, can be written as

$$\dot{x}_1 = x_2 \dot{x}_2 = \frac{1}{l} (g+u) \sin(x_1)$$

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

 $x_{k+1} = f(x_k)$

is asymptotically stable at \boldsymbol{x}^* if the linearization

$$\left. rac{\partial f}{\partial x}
ight|_{x^*}$$
 has all eigenvalues in $|\lambda| < 1$

(that is, within the unit circle).

5 minute exercise:

Is the ball and beam

$$\ddot{x} = x\dot{\phi}^2 + g\sin\phi + \frac{2r}{5}\ddot{\phi}$$

nonlinearly locally controllable around $\dot{\phi} = \phi = x = \dot{x} = 0$ (with $\ddot{\phi}$ as input)?

Remark: This is a bit more detailed model of the ball and beam than we saw in Lecture 1.

2016 IEEE Intelligent Vehicles Symp., Gothenburg

[Evestedt, Ljungqvist, Axehill]

More parking in lecture 12.

Example, cont.

The linearization around $x_1 = x_2 = 0, u = 0$ is given by

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& \frac{g}{l} x_1 \end{array}$$

It is not controllable, hence no conclusion can be drawn about nonlinear controllability $% \left({{{\left({{{{\bf{n}}} \right)}} \right)}_{\rm{cons}}} \right)$

However, simulations show that the system is stabilized by

 $u(t) = \varepsilon \omega^2 \sin(\omega t)$

if ω is large enough !

Demonstration We will come back to this example later.

Example (cont'd): Numerical iteration

 $x_{k+1} = f(x_k)$

 $x^* = f(x^*)$

to find fixed point

When does the iteration converge?

