
Lecture 2

◮ Linearization

◮ Stability definitions

◮ Stability and controllability from linearization

◮ Simulation in Matlab/Simulink

Material

◮ Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3 )

◮ Lecture slides

Today’s Goal

To be able to

◮ linearize, both around equilibria and trajectories

◮ explain definitions of stability

◮ check local stability and local controllability at equilibria

◮ simulate in Simulink

Linearization Around a Trajectory

Idea: Make Taylor-expansion around a known solution {x∗(t), u∗(t)}.
Let

dx∗

dt
= f(x∗(t), u∗(t))

be a known solution.

How will a small deviation {x̃, ũ} from this solution behave?

d(x∗ + x̃)

dt
= f(x∗(t) + x̃(t), u∗(t) + ũ(t))

(x∗(t), u∗(t))

x̃(t)

(x∗(t) + x̃(t), u∗(t) + ũ(t))

Linearization Around a Trajectory

{
dx
dt = f(x, u)

y = h(x, u)

{
dx̃
dt = A(t)x̃+B(t)ũ

ỹ = C(t)x̃+D(t)ũ

(x∗(t), u∗(t))

x̃(t)

(x∗(t) + x̃(t)︸ ︷︷ ︸
x(t)

, u∗(t) + ũ(t)︸ ︷︷ ︸
u(t)

)

Linearization Around a Trajectory, cont.

Let (x∗(t), u∗(t)) denote a solution to ẋ = f(x, u) and consider
another solution (x(t), u(t)) = (x∗(t) + x̃(t), u∗(t) + ũ(t)):

ẋ(t) = f(x∗(t) + x̃(t), u∗(t) + ũ(t))

= f(x∗(t), u∗(t)) +
∂f

∂x
(x∗(t), u∗(t))x̃(t) +

∂f

∂u
(x∗(t), u∗(t))ũ(t) +O(‖x̃, ũ‖2)

˙̃x(t) =
∂f

∂x
(x∗(t), u∗(t))x̃(t) +

∂f

∂u
(x∗(t), u∗(t))ũ(t) +O(‖x̃, ũ‖2)

(x∗(t), u∗(t))

x̃(t)

(x∗(t) + x̃(t), u∗(t) + ũ(t))

State-space form

Hence, for small (x̃, ũ), approximately

˙̃x(t) = A(t)x̃(t) +B(t)ũ(t)

where (if dim x = 2, dim u = 1)

A(t) =
∂f

∂x
(x∗(t), u∗(t)) =

[ ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x∗(t), u∗(t))

B(t) =
∂f

∂u
(x∗(t), u∗(t)) =

[ ∂f1
∂u1

∂f2
∂u1

]
(x∗(t), u∗(t))

Note that A and B are time dependent! However, if we don’t
linearize around a trajectory but linearize around an equilibrium
point (x∗(t), u∗(t)) ≡ (x∗, u∗) then A and B are constant.

Linearization, cont’d

The linearization of the output equation

y(t) = h(x(t), u(t))

around the nominal output y∗(t) = h(x∗(t), u∗(t)) is given by

ỹ(t) = C(t)x̃(t) +D(t)ũ(t)

where (if dim y = dim x = 2, dim u = 1)

C(t) =
∂h

∂x
(x∗(t), u∗(t)) =

[
∂h1
∂x1

∂h1
∂x2

∂h2
∂x1

∂h2
∂x2

]
(x∗(t), u∗(t))

D(t) =
∂h

∂u
(x∗(t), u∗(t)) =

[
∂h1
∂u1

∂h2
∂u1

]
(x∗(t), u∗(t))

Example - Linearization around equilibrium point

The linearization of
ẍ(t) =

g

l
sinx(t)

around the equilibrium x∗ = nπ is given by

¨̃x(t) =
g

l
sin(nπ + x̃(t)) ≈ g

l
(−1)nx̃(t)
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Example: Rocket

h(t)

m(t)

ḣ(t) = v(t)

v̇(t) = −g + veu(t)
m(t)

ṁ(t) = −u(t)

Let u∗(t) ≡ u∗ > 0; x∗(t) =




h∗(t)
v∗(t)
m∗(t)


; m∗(t) = m∗ − u∗t.

Linearization: ˙̃x(t) =




0 1 0

0 0 −veu∗
m∗(t)2

0 0 0


 x̃(t) +




0
ve

m∗(t)
−1


 ũ(t)

Outline

◮ Linearization

◮ Stability definitions

◮ Stability and controllability from linearization

◮ Simulation in Matlab/Simulink

Local Stability

Consider ẋ = f(x) where f(x∗) = 0

Definition The equilibrium x∗ is stable if, for any R > 0, there
exists r > 0, such that

‖x(0)− x∗‖ < r =⇒ ‖x(t)− x∗‖ < R, for all t ≥ 0

Otherwise the equilibrium point x∗ is unstable.

x(t)

r

R

Asymptotic Stability

Definition The equilibrium x∗ is locally asymptotically stable
(LAS) if it

1) is stable

2) there exists r > 0 so that if ‖x(0)− x∗‖ < r then

x(t) −→ x∗ as t −→ ∞.

(PhD-exercise: Show that 1) does not follow from 2))

Global Asymptotic Stability

Definition The equilibrium is said to be globally asymptotically
stable (GAS) if it is LAS and for all x(0) one has

x(t) → x∗ as t → ∞.

◮ Linearization

◮ Stability definitions

◮ Stability and controllability from linearization

◮ Simulation in Matlab/Simulink

Lyapunov’s Linearization Method

Theorem Assume
ẋ = f(x)

has the linearization

d

dt
(x(t)− x∗) = A(x(t)− x∗)

around the equilibrium point x∗ and put

α(A) = maxRe(λ(A))

◮ If α(A) < 0, then ẋ = f(x) is LAS at x∗,
◮ If α(A) > 0, then ẋ = f(x) is unstable at x∗,
◮ If α(A) = 0, then no conclusion can be drawn.

(Proof in Lecture 4)

Example

The linearization of

ẋ1 = −x21 + x1 + sin(x2)

ẋ2 = cos(x2)− x31 − 5x2

at x∗ =


1
0


 gives A =


−1 1
−3 −5




Eigenvalues are given by the characteristic equation

0 = det(λI −A) = (λ+ 1)(λ+ 5) + 3

This gives λ = {−2,−4}, which are both in the left half-plane,
hence the nonlinear system is LAS around x∗.
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Local Controllability

Theorem Assume
ẋ = f(x, u)

has the linearization
dx̃

dt
= Ax̃+Bũ

around the equilibrium (x∗, u∗) then the nonlinear system is locally
controllable provided that (A,B) controllable.

Here local controllability is defined as follows:

For every T > 0 and ε > 0 the set of states x(T ) that can be
reached from x(0) = x∗, by using controls satisfying
‖u(t)− u∗‖ < ε, contains a small ball around x∗.

5 minute exercise:

Is the ball and beam

ẍ = xφ̇2 + g sinφ+
2r

5
φ̈

nonlinearly locally controllable around
φ̇ = φ = x = ẋ = 0 (with φ̈ as input)?

Remark: This is a bit more detailed model of the ball and beam than we saw in
Lecture 1.

2016 IEEE Intelligent Vehicles Symp., Gothenburg

[Evestedt, Ljungqvist, Axehill] More parking in lecture 12.

Example

An inverted pendulum with vertically moving pivot point

phi

u

φ̈(t) =
1

l
(g + u(t)) sin(φ(t)),

where u(t) is acceleration, can be written as

ẋ1 = x2

ẋ2 =
1

l
(g + u) sin(x1)

Example, cont.

The linearization around x1 = x2 = 0, u = 0 is given by

ẋ1 = x2

ẋ2 =
g

l
x1

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by

u(t) = εω2 sin(ωt)

if ω is large enough !

Demonstration We will come back to this example later.

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xk+1 = f(xk)

is asymptotically stable at x∗ if the linearization

∂f

∂x

∣∣∣
x∗

has all eigenvalues in |λ| < 1

(that is, within the unit circle).

Example (cont’d): Numerical iteration

xk+1 = f(xk)

to find fixed point
x∗ = f(x∗)

When does the iteration converge?

x∗x∗
x∗x∗x∗

xx
xx

f(x)

f(x)
f(x)

f(x)

?
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Outline

◮ Linearization

◮ Stability definitions

◮ Stability and controllability from linearization

◮ Simulation in Matlab/Simulink

Simulation

Often the only method

ẋ = f(x)

◮ ACSL
◮ Simnon
◮ Simulink

F (ẋ, x) = 0

◮ Omsim
◮ Dymola
◮ Modelica (www.modelica.org)

Special purpose

◮ Spice (electronics)
◮ EMTP (electromagnetic transients)
◮ Adams (mechanical systems)

Simulink

> matlab

> > simulink

Simulink, An Example

File -> New -> Model

Double click on Continuous

Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)

Simulation->Parameters

1

s+1

Transfer FcnStep Scope

Choose Simulation Parameters

Don’t forget “Apply”

Save Results to Workspace

1

s+1

Transfer Fcn

t

To Workspace1

y

To WorkspaceSignal
Generator

Clock

Check “Save format” of output blocks (“Array” instead of “Structure”)

> > plot(t,y)

(or use “Structure” which also contains the time information.)

How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration
method

Refine adds interpolation points:

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Refine = 1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Refine = 10

Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open system(’stepmodel’)

set param(’stepmodel’,’RelTol’,’1e-3’)

set param(’stepmodel’,’AbsTol’,’1e-6’)

set param(’stepmodel’,’Refine’,’1’)

tic

sim(’stepmodel’,6)

toc

subplot(2,1,1),plot(t,y),title(’y’)

subplot(2,1,2),plot(t,u),title(’u’)
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Submodels, Example: Water tanks

Equation for one water tank:

ḣ = (u− q)/A

q = a
√
2g

√
h

Corresponding Simulink model:

2

h

1

qSum

s

1

Integrator

1/A

Gain

f(u)

Fcn

1

In

Make a subsystem and connect two water tanks in series.

1

Out

In

q

h

Subsystem2

In

q

h

Subsystem

1

In

Linearization in Simulink

Use the command trim to find e.g., stationary points to a system
> > A=2.7e-3;a=7e-6,g=9.8;

> > % Example to find input u for desired states/output

> > [x0,u0,y0]=trim(’flow’,[0.1 0.1]’,[],0.1)

x0 =

0.1000

0.1000

u0 =

8.3996e-06

y0 =

0.1000

Linearization in Simulink, cont.

Use the command linmod to find a linear approximation of the
system around an operating point:

> > [aa,bb,cc,dd]=linmod(’flow’,x0,u0);

> > sys=ss(aa,bb,cc,dd);

> > bode(sys)

Linearization in Simulink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

2

h

1

qOutput Point

1
s

IntegratorInput Point

1/A

Gain

a*sqrt(2*g*u[1])

Fcn

1

In1

Start a “Control and Estimation Tool Manager” to get a linearized model
by
Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to

Workspace (Model-¿ Export to Workspace) and much more.

Computer exercise

Simulation of JAS 39 Gripen

command

upilot

t

time

x

states

reference

1

T_f.s+1

prefilter

x’ = Ax+Bu
 y = Cx+Du

plane
dynamics

theta

pitch angle

pilot 1

L

Kf

Clock

Ctheta

◮ Simulation

◮ Analysis of PIO using describing functions

◮ Improve design

Summary

◮ Linearization, both around equilibria and trajectories

◮ Definitions of local and global stability

◮ Check local stability and local controllability at equilibria

◮ Simulation tool in this course: Simulink

Next: Lecture 3

◮ Phase plane analysis

◮ Classification of equilibria
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