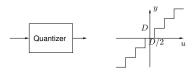
Lecture 8 — Backlash and Quantization

Today's Goal:

▶ To know models and compensation methods for backlash

▶ Be able to analyze the effect of quantization errors



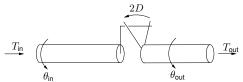
Material

► Lecture slides

Note: We are using analysis methods from previous lectures (describing functions, small gain theorem etc.), and these have references to the course book(s).

Linear and Angular Backlash





Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for high precision

EU-project: SMErobot www.smerobot.org

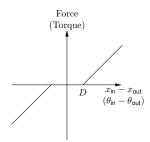
Backlash

Backlash (glapp) is

- present in most mechanical and hydraulic systems
- increasing with wear
- ► bad for control performance
- may cause oscillations

Note: A gear box without any backlash will not work if temperature rises

Dead-zone Model

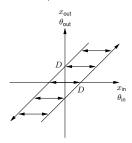


- lackbox Often easier to use model of the form $x_{\mathsf{in}}(\cdot) o x_{\mathsf{out}}(\cdot)$
- \blacktriangleright Uses implicit assumption: $F_{\rm out}=F_{\rm in}, T_{\rm out}=T_{\rm in}.$ Can be wrong, especially when "no contact".

The Standard Model

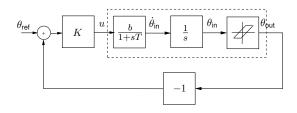
Assume instead

- $ightharpoonup \dot{x}_{
 m out} = \dot{x}_{
 m in}$ when "in contact"
- $ightharpoonup \dot{x}_{\mathrm{out}} = 0$ when "no contact"
- ► No model of forces or torques needed/used



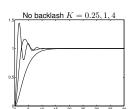
Servo motor with Backlash

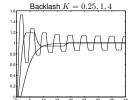
P-control of servo motor



How does the values of ${\cal K}$ and ${\cal D}$ affect the behavior?

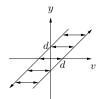
Effects of Backlash

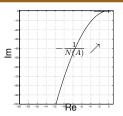




Oscillations for K=4 but not for K=0.25 or K=1. Why? Limit cycle becomes smaller if D is made smaller, but it never disappears

Describing Function for a Backlash





If A > d then

$$N(A) = \frac{b_1 + ia_1}{A} \quad \text{with} \quad a_1 = \frac{4d}{\pi} \left(\frac{d}{A} - 1\right) \quad \text{and} \quad$$

$$b_1 = \frac{A}{\pi} \left(\frac{\pi}{2} - \arcsin\left(\frac{2d}{A} - 1\right) + 2\left(1 - \frac{2d}{A}\right)\sqrt{\frac{d}{A}}\sqrt{1 - \frac{d}{A}} \right)$$

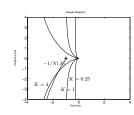
else N(A) = 0.

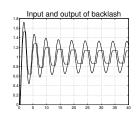
1 minute exercise

Study the plot for the describing function for the backlash on the previous slide.

Where does the function $-\frac{1}{N(A)}$ end for $A \to \infty$ and why?

Describing Function Analysis



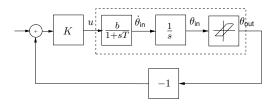


- For K=4, D=0.2: intersection between $G(j\omega)$ and -1/N(A) occurs for $A=0.33, \omega=1.24$
- \blacktriangleright Simulation: $A=0.33,\,\omega=2\pi/5.0=1.26$ Describing function predicts oscillation well!

Limit cycles?

The describing function method is only approximate.

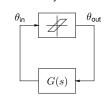
Can one determine conditions that guarantee stability?

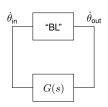


Note: $\theta_{\rm in}$ and $\theta_{\rm out}$ will not converge to zero Idea: Consider instead $\dot{\theta}_{\rm in}$ and $\dot{\theta}_{\rm out}$

Backlash Limit Cycles

Rewrite the system as





Note that the block "BL" satisfies

$$\dot{\theta}_{\mathsf{out}} = \left\{ egin{array}{ll} \dot{ heta}_{\mathsf{in}} & \mathsf{in} \; \mathsf{contact} \\ 0 & \mathsf{otherwise} \end{array} \right.$$

Analysis by small gain theorem

Backlash block has gain ≤ 1 (from $\dot{\theta}_{in}$ to $\dot{\theta}_{out}$)

Hence closed loop is BIBO stable provided that

G(s) is asymptotically stable and $|G(i\omega)|<1$ for all ω

Analysis by circle criterion

Backlash map from $\dot{\theta}_{\rm in}$ to $\dot{\theta}_{\rm out}$ is in the sector [0,1].

$$-1/k_1=\infty$$
 and $-1/k_2=-1$

Hence closed loop is stable if ${\rm Re}\ G(i\omega)>-1$ for all $\omega.$

(For our motor example this proves stability when ${\cal K}<1)$

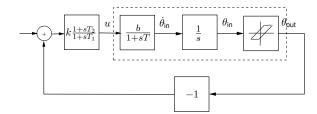
Backlash compensation

- ▶ Dead-zone
- ► Linear controller design
- ► Backlash inverse
- Mechanical solutions

Linear Controller Design

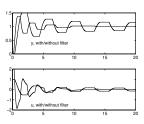
Introduce phase lead to avoid the -1/N(A) curve:

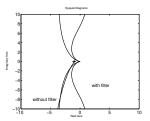
Instead of only a P-controller we choose $K(s) = k \frac{1+sT_2}{1+sT_1}$



Controller $K(s) = k \frac{1+sT_2}{1+sT_1}$

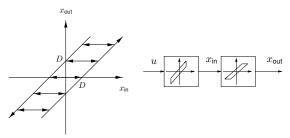
Simulation with $T_1=0.5, T_2=2.0$





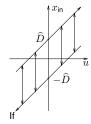
No limit cycle, oscillation removed!

Backlash Inverse



ldea: Let $x_{\rm in}$ jump $\pm 2D$ when $\dot{x}_{\rm out}$ should change sign. Works if the backlash is directly on the system input!

Backlash Inverse

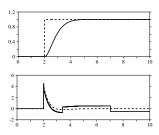


$$x_{\rm in}(t) = \left\{ \begin{array}{ll} u + \widehat{D} & \text{if } u(t) > u(t-) \\ u - \widehat{D} & \text{if } u(t) < u(t-) \\ x_{\rm in}(t-) & \text{otherwise} \end{array} \right.$$

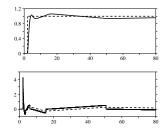
- $\hat{D} = D$ then $x_{\text{out}}(t) = u(t)$ (perfect compensation)
- $ightharpoonup \widehat{D} < D$: Under-compensation (decreased backlash)
- $lackbox{} \widehat{D} > D$: Over-compensation, often gives oscillations

Example-Perfect compensation

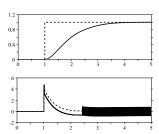
Motor with backlash on input, PD-controller



Example-Under compensation



Example-Over compensation



Backlash-More advanced models

Warning: More detailed models needed sometimes
Model what happens when contact is attained
Model external forces that influence the backlash
Model mass/moment of inertia of the backlash.

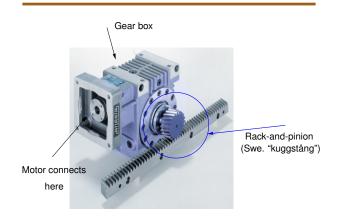
Example: Parallel Kinematic Robot

Gantry-Tau robot:

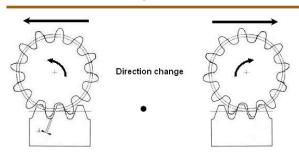
Need backlash-free gearboxes for very high precision

EU-project: SMErobot http://www.smerobot.org

"Rotational to Linear motion"



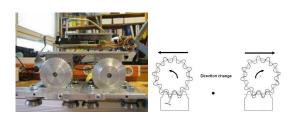
Backlash in gearbox and rails



Remedy:

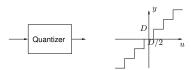
Use two motors in opposite directions: One motor can act as spring and brake to "reduce" backlash. Need measurements on both motor and arm-side

Backlash compensation



From master thesis by B. Brochier, Control of a Gantry-Tau Structure, LTH, 2006 See also master theses by j. Schiffer and L. Halt, 2009.

Quantization



How accurate should the converters be? (8-14 bits?)

What precision is needed in computations? (8-64 bits?)

- ► Quantization in A/D and D/A converters
- Quantization of parameters
- ► Roundoff, overflow, underflow in operations

NOTE: Compare with (different) limits for "quantizer/dead-zone relay" in Lecture 6.

Linear Model of Quantization

Model the quantization error as a stochastic signal e independent of \boldsymbol{u} with rectangular distribution over the quantization size.

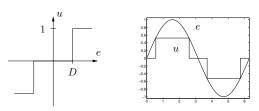
Works if quantization level is small compared to the variations in \boldsymbol{u}

$$u$$
 Q y u v v

Rectangular noise distribution over $[-\frac{D}{2},\frac{D}{2}]$ has the variance

$$Var(e) = \int_{-\infty}^{+\infty} e^2 f_e de = \int_{-D/2}^{D/2} e^2 \frac{1}{D} de = \frac{D^2}{12}$$

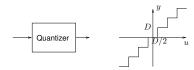
Describing Function for Deadzone Relay



Lecture 6 \Rightarrow

$$N(A) = \frac{4}{\pi A} \sqrt{1 - D^2/A^2}$$
 for $A > D$ and zero otherwise

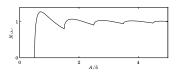
Describing Function for Quantizer



$$N(A) = \begin{cases} 0 & A < \frac{D}{2} \\ \frac{4D}{\pi A} \sum_{k=1}^{n} \sqrt{1 - \left(\frac{2k-1}{2A}D\right)^2} & \frac{2n-1}{2}D < A < \frac{2n+1}{2}D \end{cases}$$

(See exercise)

Describing Function for Quantizer



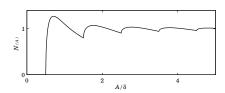
The maximum value is $4/\pi \approx 1.27$ for $A \approx 0.71D$.

Predicts limit cycle if Nyquist curve intersects negative real axis to the left of $-\pi/4\approx-0.79.$

Should design for gain margin > 1/0.79= 1.27!

Note that reducing ${\cal D}$ only reduces the size of the limit oscillation, the oscillation does not vanish completely.

5 minute exercise



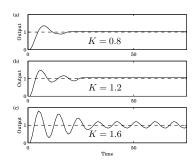
How does the shape of the describing function relate to the number of possible limit cycles and their stability.

What if the Nyquist plot

- \blacktriangleright intersects the negative real axis at -0.80?
- ▶ intersects the negative real axis at -1?
- \blacktriangleright intersects the negative real axis at -2?

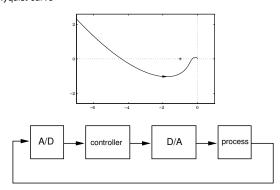
Example – Motor with P-controller.

Roundoff at input, D=0.2. Nyquist curve intersects at -0.5K. Hence stable for K<2 without quantization. Stable oscillation predicted for K>2/1.27=1.57.



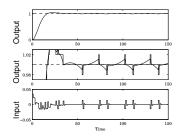
Example - Double integrator with 2nd order controller

Nyquist curve



Quantization at A/D converter

Double integrator with 2nd order controller, $D=0.02\,$

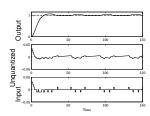


Describing function: $A_y \approx D/2 = 0.01$, period T = 39

Simulation: $A_y=0.01$ and T=28

Quantization at D/A converter

Double integrator with 2nd order controller, $D=0.01\,$



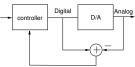
Describing function: $A_u \approx D/2 = 0.005, \mbox{period} \ T = 39$

Simulation: $A_u=0.005$ and T=39

Better prediction, since more sinusoidal signals

Quantization Compensation

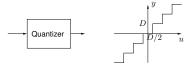
- Use improved converters, (smaller quantization errors/larger word length)
- Linear design, avoid unstable controller, ensure 1.3 gain margin
- Use the tracking idea from anti-windup to improve D/A converter
- Use analog dither, oversampling and digital low-pass filter to improve accuracy of A/D converter



Today's Goal

► To know models and compensation methods for backlash

▶ Be able to analyze the effect of quantization errors



No More Lecture This Week!