Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

> Gain scheduling

» Internal model control
» Model predictive control
» Nonlinear observers

> Lie brackets

Material:

> Lecture notes
P Internal model, more info in e.g.,

> Section 8.4 in [Glad&Ljung]
» Ch 12.1 in [Khalil]

Gain Scheduling
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Example of scheduling variables

» Production rate
» Machine speed

» Mach number and dynamic pressure

Compare structure with adaptive control!
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> state dependent controller parameters.
> K =K(q)

> design controllers for a number of operating points.
> use the closest controller.

Problems:

» How should you switch between different controllers?
» Bumpless transfer

» Switching between stabilizing controllers can cause instability.

o Gain scheduling

e Internal model control

o Model predictive control

o Nonlinear observers

o Lie brackets




Internal Model Control

Two equivalent diagrams

B
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Feedback from model error y — 4.
Design: Choose G ~ G and Q stable with Q ~ G~1.

Example
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Include the nonlinearity in the internal model. Choose Q ~ G~ 1.
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Small gain theorem can then be used for analysis!

Internal Model Control Can Give Problems

> Unstable G
> @ 3 G~ due to RHP zeros
» Cancellation of process poles may show up in some signals

Outline

o Gain scheduling

o Internal model control

e Model predictive control
o Nonlinear observers

o Lie brackets

Model Predictive Control — MPC

: . y_teference r
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1. Derive the future controls u(t + j), j=0,1,...,N —1that
give an optimal predicted response.

2. Apply the first control u(¢).
3. Start over from 1 at next sample.

What is Optimal?

Minimize a cost function, V, of inputs and predicted outputs.

u(t+ N —1) y(t+ M)
V= V(UtﬂY;f)v Ut = 5 }/t =
u(t) y(t+14¢)
V often quadratic
V(U Y:) =Y QyY: + Ul QuUs (1)

= linear controller
u(t) = —Lz(t|t)




Model Predictive Control

+ Flexible method
* Many types of models for prediction:
> state space, input—output, step response, FIR filters
* MIMO
* Time delays

+ Can include constraints on input signal and states

+ Can include future reference and disturbance information
— On-line optimization needed

— Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)

A predictor for Linear Systems

Discrete-time model

z(t +1) = Az(t) + Bu(t) + Byvi(t) o1
y(t) = Cx(t) + va(t) 1

Predictor (v unknown)

Z(t+k + 1|t) = AZ(t + k|t) + Bu(t + k)
Ut + k|t) = CZ(t + klt)

The )M -step predictor for Linear Systems

Z(t]t) is predicted by a standard Kalman filter, using outputs up to time
t, and inputs up to time ¢ — 1.

Future predicted outputs are given by

u(t+M —1)]
Yt + Mlt) CAM CB CAB CA’B :
: =| ¢ |8+ O CB CAB u(t+ N —1)
gt +11t) CA : B ' :
u(t)

Y, = D,3(t[t) + DU,

Limitations

Limitations on control signals, states and outputs,
[u®)] < Cu |2:(t)] < Cay |y(B)] < Cy,

leads to linear programming or quadratic optimization.

Efficient optimization software exists.

Design Parameters

Model
M (look on settling time)
N as long as computational time allows

If N < M — 1 assumptionon u(t + N),...,u(t + M — 1)
needed (e.9., = 0, = u(t + N —1).)
Qy, Qu (trade-offs between control effort etc)

vVvyyvyy

vy

Cy, Cy, limitations often given
» Sampling time

Product: ABB Advant

Example—Motor

1 0.139 0.214
A= [0 OA861] » B= [2.786] » O= [1 0]
T
Minimize V' (Uy) = ||Y; — R| where R = , r=reference, M = 8§,
r
N=2ut+2)=ut+3)=ut+7)=...=0

Example—Motor
cA8 CASB CA'B

vi=| ¢ s+ | o [“(zg)l)]
CA 0 CB

= DILL‘(IL) + DuUt
Solution without control constraints

Ui =—(DID,) DI Dz + (DID,)'DIR =
__[-250 -0.18) (a(t)—r
- 277 0.51 0)

u(t) = =2.77(z1(t) — r) — 0.51za(t)

Use

Example—Motor—Results

No control constraints in optimiza- Control constraints |u(t)| < 1 in
tion (but in simulation) optimization.




Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets

Nonlinear Observers

What if « is not measurable?
&= f(z,u), y=h(z)
Simplest observer (open loop — only works for as. stable systems).
T = f(F,u)
Correction, as in linear case,
z = f(Z,u) + K(y - h(@))
Choices of K

> Linearize f at x, find K for the linearization
> Linearize f at Z(t), find K (t) for the linearization

Second case is called Extended Kalman Filter

A Nonlinear Observer for the Pendulum

Control tasks:
1. Swing up
2. Catch
3. Stabilize in upward position

The observer must to be valid for
a complete revolution

A Nonlinear Observer for the Pendulum

d*0
i sin 6 + w cos 0
xr] = 0, xTo = %? -
dxl
e
a7
dxo . n
— =S uCcosxT
it 1 1
Observer structure:
diy
— =1 +ki(x1 — 2
it 2 1(21 1)
di
% = sin# + ucos +ho(x1 — 21)

A Nonlinear Observer for the Pendulum

Introduce the error & = & — «

dzq

e

i 121 + T2

dTo A . R _
—p = sindi —sina + u(cos &1 — cosxy) — koq

il = Bl

v = 2sin%(cos (x1+ %) — usin(z; + %))

G(s)

Stability with Small Gain Theorem

The linear block:

1 1

G(s) = -
(#) 24 kis+ke 82+ 2Cwos + wi

With ¢ > % this gives
) 1
Y = max |G(iw)| = |G(0)] = —
wo

Moreover

2sin %(cos (1 + %) — usin(x + %))‘ < |Z1]y/1 4 ud

so the observer is stable by the small gain theorem provided that
kg = wi is selected to satisfy /T + uZ,, < 1.

2
(]

o] =

A Nonlinear Observer for the Pendulum

Control Signal
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Outline

o Gain scheduling

o Internal model control

o Model predictive control
o Nonlinear observers

e Lie brackets




Controllability

Linear case
i = Ax + Bu

All controllability definitions coincide

0— z(T),

z(0) — 0,

z(0) = z(T)
T either fixed or free

Rank condition System is controllable iff
W, = (B AB ... A"’lB] full rank

Is there a corresponding result for nonlinear systems?

Lie Brackets

Lie bracket between f(x) and g(z) is defined by

0 0
ol = 22y

_ | cosT2 T
f—[ o ] g—[l],
dg 8f
[fi9] = oz’ ~ %
(1 0 coswa| 0 —sinxy T
10 0 ot 1 0 1
_ [cosxa + sinxo
= 0

Example:

Why interesting?

z = gi1(z)ur + g2(z)ue

(1,
(07
1

}

), tel0,€
), tE€ e 2€
(—1,0), t € [2¢, 3¢
(0,-1), t€ [3¢4¢
gives motion z:(4€) = x(0) + €2[g1, go] + O(€?)

aViaViay ray/

—91 92

0
' 1
> The motion (u1,ug) = 0
-1

> Pt

lo1.92] = hm

> The system is controllable if the Lie bracket tree has full rank

(controllable=the states you can reach from = = 0 at fixed time 7" contains a ball around = = 0)

The Lie Bracket Tree

91,91, g2]] [92.[91, g2]]

l1: (91, g1, o]l 2, (91, 92]]]

Parking Your Car Using Lie-Brackets

Parking the Car

Can the car be moved sideways?

Sideways: in the (— sin(y), cos(¢), 0, 0)-direction?

Jg g1

2
l91,92] = T a2
0 0 —sin(p+6) —sin(p+6)) (0
|0 0 cos(p+86) cos(p+0) 0] 0
10 0 0 cos(0) 0
0 0 0 0 1
x 0 cos(p +6) —sin(p +0)
dlyf_|o sin(p + 0) cos(p + 0) o
@ |o| = o] ™| s |[™ = cos(8) =: g3 = "wriggle
0 1 0 0
Once More The Parking Theorem

[g5.92] = g3 — 8939
3,92 (% 5 9y 927
—sin(p)
= COSO(@) = “sideways”
0

The motion [g3, g2] takes the car sideways.

(=sin(), cos(¢))

You can get out of any parking lot that is bigger than your car. Use the
following control sequence:

Wriggle, Drive, —Wriggle(this requires a cool head), —Drive (repeat).




Outline

o Gain scheduling

o Internal model control
o Model predictive control
o Nonlinear observers

o Lie brackets

Integral Quadratic Constraint

The (possibly nonlinear) operator A on L5'[0, co) is said to satisfy the
IQC defined by 11 if

e Extra: Integral quadratic constraints o0 otiw) 1" U(iw)
/ N H(iw) | —~ . |dw>0
Jooo | (Av)(iw) (Av)(iw)
for all v € Ly[0, 00).
1QC Stability Theorem
A structure II(iw) Condition
TA
. 0 I
A passive { I 0 }
) x(iw)I 0 . G(s) —()—
< (7 >
T R G i) 20
X(iw) Y (iw) X=X*">0 X
0e-1,1] { Y(iw) —X(iw) V- _y* Let G(s) be stable and proper and let A be causal.
X v For all 7 € [0, 1], suppose the loop is well posed and 7A satisfies the
_ IQC defined by II(iw). If
a(t) € [-1,1] {YT X} y H(iw)
As)ete 1 | #@dp@)? 0 plw) = [ G(}W) } (i) [ G(}“) } <0 forwe [0,
0 —z(iw) 2 max|g|<g, sin(6w/2)

then the feedback system is input/output stable.

A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

G(iw

>> abst_init_iqc;

>> G = t£([10 0 01,[1 2 2 11);
>> e = signal

>> w = signal

>> y = -Gx(et+w)

>> w==iqc_monotonic (y)

>> iqc_gain_tbx(e,y)

A servo with friction

Gain2

Saturation

25242541
015245

Sumt Integrator Integratort Scope

Gaint Sum Gain Transfer Fen

An analysis model defined graphically

monotonic with
restrict rate

performance

Sum Gain

25242541
0.015245+.01

Integratort

Transfer Fen

Exp(-ds)-1

uncertain delay

>> iqc_gui(’fricSYSTEM’)
extracting information from fricSYSTEM ...
scalar inputs: 5

states: 10
simple g-forms: 7

LMI #1 size = 1 states: 0
LMI #2 size = 1 states: 0
LMI #3 size = 1 states: 0
LMI #4 size = 1 states: 0
LMI #5 size =1 states: 0O

Solving with 62 decision variables ...

ans = 4.7139




A library of analysis objects
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The friction example in text format

=

d=signal; disturbance signal
e=signal; error signal
wl=signal; % friction force

>

w2=signal; % delay perturbation
u=signal; % control force

v=tf (1, [1 0])*(u-wil) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10+tf([2 2 1],[0.01 1 0.01])*e;
wl==igc_monotonic(v,0,[1 5],10)
w2==iqc_cdelay(x,.01)
iqgc_gain_tbx(d,e)

Summary

e Gain scheduling

e Internal model control
e Model predictive control
e Nonlinear observers

e Lie brackets

e Extra: Integral quadratic constraints

Next: Lecture 14

> Course Summary




