
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam – January 13, 2020, 08:00 – 13:00

Points and grades
All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem.

Grade limits:

Grade 3: 10 – 16 points
4: 16.5 – 21 points
5: 21.5 – 25 points

Accepted aid
All course material, except for exercises, old exams, lab instructions, and solutions of
these, may be used as well as standard mathematical tables and authorized “Formel-
samling i reglerteknik”/“Collection of Formulae”. Pocket calculator.

Note!
In many cases the subproblems can be solved independently of each other.

Good luck!
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1. Find all equilibrium points of the following system and classify them, e.g. un-
stable node/focus etc.

ẋ1 = x2 sin(πx1)
ẋ2 = 2x1 − cos(πx2)

(3 p)

Solution
The equilibrium points are those (x1, x2) such that ẋ1 = ẋ2 = 0, i.e.

0 = ẋ1 = x2 sin(πx1)
0 = ẋ2 = 2x1 − cos(πx2)

From the first equation we see that either x2 = 0 or x1 = n, where n is any
integer. In the case x2 = 0, the second equation gives x1 = 1

2 . In other words,
(1

2 , 0) is an equilibrium point.

As for the second case x1 = n, since −1 ≤ cos(t) ≤ 1 the cosine term in
the second equation cannot match the x1 term if n 6= 0. Hence, the only pos-
sibility is that n = 0 and so x1 = 0. But this means cos(πx2) = 0 which is
possible if and only if x2 = 1

2 + k for any integer k.
Equilibrium points: {(1

2 , 0), (0, 1
2 + k)}

In order to classify the equilibrium points, we consider the system matrix A
for the linearized system evaluated at these points and find its eigenvalues.

A(x1, x2) = ∂f

∂x
=
(
πx2 cos(πx1) sin(πx1)

2 π sin(πx2)

)

Evaluating the system matrix at each equilibrium point, we have

A(1
2 , 0) =

(
0 1
2 0

)

A(0, 1
2 + k) =

(
πk + π

2 0
2 (−1)kπ

)
The matrix corresponding to the point (1

2 , 0) has the characteristic polynomial
s2 − 2 and hence eigenvalues λ = ±

√
2. The equilibrium point (1

2 , 0) therefore
corresponds to a saddle point.

As for the other matrix, due to its triangular shape the eigenvalues are vis-
ible on the diagonal. One eigenvalue alternates between a positive value for
even k and a negative value for odd k. Additionally, for non-negative k, the
other eigenvalue is always positive whereas it is always negative for negative
k. Thus, the equilibrium point (0, 1

2 + k) for non-negative k corresponds to an
unstable node for even k and saddle point for odd k, whereas for negative k it
corresponds to a saddle point for even k and a stable node for odd k.
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2. The motion of a satellite orbiting around Earth can be modeled in the plane
by the following equations

r̈(t) = r(t)θ̇2(t)− α

r2(t) + u1(t)

θ̈(t) = −2ṙ(t)θ̇(t)
r(t) + u2(t)

r(t)

Here, r denotes the distance from the center of Earth to the satellite and θ
the angle with respect to some axis. Further, the satellite is equipped with
the means of applying forces u1 and u2 in the radial and tangential directions
respectively. α is a constant.

a. Introduce the state variables x1(t) = r(t), x2(t) = ṙ(t), x3(t) = θ(t) and
x4(t) = θ̇(t), and express the system on state-space form. (1 p)

b. Verify that a solution x∗(t) to the system when the input is set to zero, i.e.
u∗1(t) = u∗2(t) = 0, is given by

x∗1(t) = c, x∗2(t) = 0, x∗3(t) = pt+ q, x∗4(t) = p

Here, c, p, q are constants and p =
√

α
c3 . What kind of motion does the solution

represent? (1 p)

c. Linearize around the trajectory (x∗(t), u∗(t)). (1 p)

d. Is the trajectory locally asymptotically stable? (1 p)

Solution

a. With the introduced state variables, the system may be expressed as

ẋ1 = x2

ẋ2 = x1x
2
4 −

α

x2
1

+ u1

ẋ3 = x4

ẋ4 = −2x2x4
x1

+ u2
x1

b. Plugging the given expressions into the equations of motion with u∗(t) = 0
gives

ẋ∗1 = ċ = 0 = x∗2

ẋ∗2 = 0̇ = 0 = c
α

c3 −
α

c2 = x∗1x
∗
4

2 − α

x∗1
2

ẋ∗3 = d

dt
(pt+ q) = p = x∗4

ẋ∗4 = ṗ = 0 = −2 · 0 · p
c

= −2x∗2x∗4
x∗1

This shows that x∗(t) satisfies the equations and is thus a solution.

The solution represents a circular trajectory (constant c = x1(t) = r(t)) with
constant angular velocity (constant p = x4 = θ̇) in the plane.
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c. We begin by formulating the Jacobians for the system.

∂f

∂x
=


0 1 0 0

x2
4 + 2 α

x3
1

0 0 2x1x4

0 0 0 1
2x2x4
x2

1
− u2

x2
1

−2x4
x1

0 −2x2
x1



∂f

∂u
=


0 0
1 0
0 0
0 1

x1


Evaluating the matrices along (x∗(t), u∗(t)), we have

A = ∂f

∂x
(x∗(t), u∗(t)) =


0 1 0 0

3p2 0 0 2cp
0 0 0 1
0 −2p

c 0 0



B = ∂f

∂u
(x∗(t), u∗(t)) =


0 0
1 0
0 0
0 1

c


With the deviation variables x̃(t) = x(t) − x∗(t) and ũ = u(t) − u∗(t) = u(t),
the linearized system finally becomes

˙̃x = Ax̃+Bũ

Note that A and B are time-invariant, an atypical occurrence given that the lin-
earization normally changes depending on the point at which the linearization
is made.

d. The solution is not locally asymptotically stable. If it were, then by definition
there would exist a k > 0 such that any solution starting within distance k of
x∗(0) would also have to converge to x∗(t). But given such a k, one can always
take the solution x∗∗(t) as identical to x∗(t) except for x∗∗3 (t) = x∗3(t) − k

2 .
This new solution x∗∗(t) (movement along the same circle, but starting at a
different point) starts within distance k of x∗(0) but does not converge to x∗(t),
a contradiction.

3. Consider the following system

ẋ1 = ax1 − x3
2 + µ(x)

ẋ2 = x1 − x2

where µ(x) denotes a control law and a is a constant.

a. Use exact linearization to find a µ(x) such that the origin becomes globally
asymptotically stable. (2 p)
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b. Suppose now that we replace a with an additional state x3 which we can
influence directly according to

ẋ1 = x1x3 − x3
2

ẋ2 = x1 − x2

ẋ3 = µ(x)

Find a µ(x) such that the origin becomes globally asymptotically stable. (2 p)
Hint: Consider the Lyapunov function candidate

V (x) = x2
1

2 + x4
2

4 + x2
3

2

Solution

a. Choose µ(x) in such a way that the nonlinearity is removed, the system becomes
linear and the system matrix has LHP eigenvalues. This can be accomplished
in many different ways, and one suggestion is

µ(x) = x3
2 − (a+ 1)x1

Plugging this µ into the system equations, we have

ẋ1 = ax1 − x3
2 + µ = ax1 − x3

2 + (x3
2 − (a+ 1)x1) = −x1

ẋ2 = x1 − x2

The resulting system can be expressed in matrix form as ẋ = Ax with

A =
(
−1 0
1 −1

)

and its triangular shape immediately allows us to see its eigenvalues λ on the
diagonal: λ = −1,−1. Because the eigenvalues are in the strict LHP and the
system is linear, it must be globally asymptotically stable.

b. We begin by convincing ourselves that the function provided in the hint really
is a Lyapunov function. First, it is clear that V (x) > 0 ∀x 6= 0 with V (0) = 0.
Then we have

V̇ (x) = x1ẋ1 + x3
2ẋ2 + x3ẋ3

= x1(x1x3 − x3
2) + x3

2(x1 − x2) + x3µ

= x2
1x3 − x1x

3
2 + x3

2x1 − x4
2 + x3µ

= x3(µ+ x2
1)− x4

2

In order for V to be a Lyapunov function, it has to satisfy V̇ (x) ≤ 0 along all
trajectories x(t). One way of achieving this is by choosing

µ(x) = −x3 − x2
1

Then

V̇ (x) = x3(µ+ x2
1)− x4

2 = x3((−x3 − x2
1) + x2

1)− x4
2 = −x2

3 − x4
2 ≤ 0
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and the system becomes
ẋ1 = x1x3 − x3

2
ẋ2 = x1 − x2

ẋ3 = −x3 − x2
1

Consider now the set

E = {(x1, x2, x3) | V̇ (x) = 0} = {(x1, x2, x3) | x2 = x3 = 0}

and take a point inside with x1 6= 0. Since x2 = x3 = 0 for any element in E, we
have ẋ2 = x1−x2 = x1 6= 0 and so x2 will either increase or decrease. Hence, the
trajectory starting in that point will eventually violate the definition of E and
leave the set. With the origin being an equilibrium point, the largest invariant
subset of E must therefore be {(0, 0, 0)}. Finally, since clearly V (x) → ∞
as ‖x‖ → ∞, LaSalle’s invariant set theorem may be invoked to show that
the choice µ(x) = −x3 − x2

1 makes the origin a globally asymptotically stable
equilibrium point.

4. The central bank of Sweden (Riksbanken) has as objective to regulate the
inflation y(t) [%] such that it is kept close to a setpoint of r(t) = 2 [%].
As control signal to achieve this, they can decide on a certain interest rate
u(t) [%], which is used for lending money to banks, the so-called “official bank
rate” (reporäntan). Now, we would like to replace the central bank with a
proportional controller.
Assume that the relationship between the bank rate u(t) and the inflation y(t)
can be described with the following model:

G(s) = 384
(s+ 4)2(s+ 12)

where t is the time in years. We want to decide the bank rate u(t) with the
proportional controller C(s).
Now assume that the allowed bank rate is restricted to between −0.25 and
0.25 percent. The closed-loop system then becomes as shown in Fig. 1, with
the non-linearity

f(x) =


x if |x| ≤ 0.25
0.25 if x > 0.25
−0.25 if x < −0.25

(6 p)

a. Give a formula for the describing function N(A) of the non-linearity f(x).

For the following sub-problems, you may use the Bode plot of G(s) in Fig. 2, as
well as the describing function plot in Fig. 3. Describe your reasoning carefully.

b. Predict the amplitude and frequency of possible limit cycles in the closed-loop
system in Fig. 1 when C(s) = 10. Alternatively, prove that the closed-loop
system is BIBO stable.

c. Predict the amplitude and frequency of possible limit cycles in the closed-loop
system in Fig. 1 when C(s) = 1/4. Alternatively, prove that the closed-loop
system is BIBO stable.
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d. Predict the amplitude and frequency of possible limit cycles in the closed-loop
system in Fig. 1 when C(s) = 3/4. Alternatively, prove that the closed-loop
system is BIBO stable.

C(s) f(·)

−1

Σ
r yG(s)

Figure 1: Closed-loop system with limited control signal u(t).

Figure 2: Bode plot for the system G(s).

Solution
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Figure 3: Describing function N(A) for the non-linearity f(x).

a. For a saturation

f(x) =


x if |x| ≤ D
D if x > D

−D if x < −D

the describing function N(A) is, according to the lecture notes, given by

N(A) =


1 if A ≤ D
1
π

(2φ0 + sinφ0) if A > D

where φ0 = arcsin(D/A). In this problem, we have D = 0.25, so we get

N(A) =


1 if A ≤ 0.25
1
π

(2φ0 + sinφ0) if A > 0.25

with φ0 = arcsin(0.25/A).

b. The system in Fig. 1 can be rewritten as in Fig. 4, where r̃ = C(s)r. Describing
function analysis predicts a limit cycle with amplitude A and angular frequency
ω as the solution of

G0(iω) = − 1
N(A) , (1)

where G0(iω) := G(iω)C(iω). Since the describing function N(A) is real, pos-
sible solutions to this equation must occur when G0(iω) intersects the real
axis. As seen in Fig. 3, N(A) takes values between 0 and 1, which means
that −1/N(A) takes values in the interval (−∞,−1]. Solutions of equation (1)
therefore correspond to intersections of G0(iω) with the real axis in the interval
(−∞,−1]. In Fig. 2, we see that we have one such intersection. The phase is
−180◦ for ω ≈ 10, which corresponds to an intersection with the negative real
axis. At this point, the amplitude of G(iω) is |G(i10)| ≈ 0.2, implying that
|G0(i10)| = 10|G(i10)| = 2 > 1, so this is indeed an intersection with the real
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axis in the interval (−∞,−1]. The amplitude A of the predicted limit cycle is
obtained by using the magnitude of equation (1):

|N(A)| = 1
|G0(i10)| ≈ 1/2.

Equation (1) is thus satisfied when N(A) ≈ 1/2, which in Fig. 3 can be seen to
correspond to A ≈ 0.6. Thus, the describing function analysis predicts a limit
cycle with amplitude of about 0.6 and angular frequency of about 10, i.e., with
period T = 2π/10 ≈ 0.62.

f(·)

−G(s)C(s)

Σ

~r

Figure 4: The system in Fig. 1 rewritten, where r̃ = C(s)r.

c. In this case, the amplitude of the open-loop system transfer function at the
intersection with the negative real axis is |G0(i10)| = (1/4)|G(i10)| = 0.05 <
1, so we do not predict any limit cycles for the closed-loop system with the
describing function analysis. We should then instead try to prove that the
closed-loop system is BIBO stable. According to the Small Gain Theorem, the
closed-loop system in Fig. 4 is stable if

‖f‖ · ‖G0‖ < 1.

The gain for f is given by

‖f‖ = sup
x 6=0

‖f(x)‖2
‖x‖2

= 1.

The gain for the open-loop system is

‖G0‖ = sup
ω∈(0,∞)

|G0(iω)| = 1
4 · sup

ω∈(0,∞)
|G(iω)| = 1

4 · 2 = 1
2 < 1,

so we can conclude that the system is BIBO stable according to the Small Gain
Theorem.

d. As in the previous subproblem, we have that |G0(i10)| = (3/4)|G(i10)| =
0.15 < 1, so we do not predict any limit cycles for the closed-loop system with
the describing function analysis. We should then again try to prove that the
closed-loop system is BIBO stable. The gain for the open-loop system is

‖G0‖ = sup
ω∈(0,∞)

|G0(iω)| = 3
4 · sup

ω∈(0,∞)
|G(iω)| = 3

4 · 2 = 3
2 > 1,

so we cannot conclude that the system is BIBO stable using the Small Gain
Theorem. Instead, we try to use the Circle Criterion. The non-linearity can be
bounded between two linear functions with non-negative slope, i.e.

k1x ≤ f(x) ≤ k2x,
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with k1 = 0 and k2 = 1. Furthermore, the system G0(s) is stable. If we would
have k1 > 0, BIBO stability is proven if the Nyquist curve of G0(s) does not
intersect or encircle the circle defined by the points (−1/k1, 0) and (−1/k2, 0).
The limit case k1 = 0 corresponds to that the point −1/k1 goes to −∞, and the
circle then becomes a half-plane through the point (−1/k2, 0). The resulting
criterion is that the Nyquist curve of G(s) must stay to the right of the line
Re s = −1/k2. In the Bode diagram in Fig. 2, we can see that when argG(iω) >
90◦, it holds that |G(iω)| < 4/3, which gives |G0(iω)| < 3

4 ·
4
3 = 1, so we get that

the Nyquist curve always has an amplitude less than 1 in the left half-plane,
and therefore it cannot enter to the left of the line Re s = −1/k2 = −1. BIBO
stability is therefore proven by the Circle Criterion.

10



5. Consider the system in Figure 5, where ∆ denotes some unknown nonlinear
system (this is often called “multiplicative uncertainty”). The system with
∆ = 0 is stable. Some relevant amplitude curves are shown in Figure 6. Use
the figures to find a bound γ so that the system is stable for all ∆ with gain
smaller than γ. (2 p)

Figure 5: The system in Problem 5.
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Figure 6: Amplitude curves for Problem 5.

Solution
The diagram can be rewritten as a feedback diagram with (1 + GC)−1GC in
the lower box and ∆ in the upper. The Small Gain Theorem says that the loop
is stable if

‖∆‖ · ‖(1 +GC)−1GC‖ < 1.

From the diagram we read ‖(1 + GC)−1GC‖ = 1, hence we have stability if
‖∆‖ < 1. Hence γ = 1.
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6. In this problem we consider the following dynamics

ẋ1 = x3
2 − arctan x1 + u

ẋ2 = x1

a. A friend suggests a sliding set defined by σ(x) = x1 − x2. Show that this
suggestion would lead to unstable sliding dynamics. (1 p)

b. Instead you decide to use a sliding mode controller based on σ(x) = x1 + x2.
Construct such a controller so that σ(x) = 0 is a sliding set and all state
trajectories reach the sliding set. (2 p)

Solution

a. The sliding set is invariant so σ̇(x) should satisfy σ̇(x) = 0. This gives

σ̇(x) = ẋ1 − ẋ2 = ẋ1 − x1 = 0

This implies that x1 →∞ on the sliding set and the sliding dynamics is hence
unstable.

b. We have that
∂σ

∂x
f = x3

2 − arctan x1 + u+ x1

The controller u = −x3
2 + arctan x1−x1− sign(x1 +x2) will do the job as then

for all x (including those satisfying σ(x) = 0)

∂σ

∂x
f+ = −1

∂σ

∂x
f− = 1

Thus σ will go to zero, and the sliding surface is a sliding set. One could also
define the Lyapunov function V = σ2/2 and note that

V̇ = σσ̇ = (x1 +x2)(ẋ1 + ẋ2) = (x1 +x2)(−x1−sign(x1 +x2)+x1) = −|x1 +x2|

to show that all state trajectories reach the sliding set.

7. Consider the problem

minimize
∫ tf

0
u2(t)t dt

subject to x(0) = c, x(tf ) = 0
− 1 ≤ u ≤ 1
ẋ = u
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a. Show how the problem can be written as

minimize
∫ tf

0
u2(t)x2(t) dt

subject to x(0) = [c, 0]T , x(tf ) = [0, tf ]T

− 1 ≤ u ≤ 1
ẋ1 = u

ẋ2 = 1

(0.5 p)

b. Let tf > 1 and c > 0. Show that a solution to the problem in a is given by

u = sat(−µ1/(2t))

for some constant µ1.
Hint: If a ≥ 0 then the solution to

minimize
z

z2a+ bz

subject to − 1 ≤ z ≤ 1

is given by z = sat(−b/(2a)). (1.5 p)

c. Verify that µ1 is given by the solution to

c = µ1
2
(
− 1− log(tf ) + log(µ1/2)

)
.

(1 p)

Solution

a. Define x1(t) = x(t) and introduce a new state x2(t) = t corresponding to the
time. The new state must then have the initial and final conditions x2(0) = 0
and x2(tf ) = tf . The resulting state dynamics becomes

ẋ1 = u

ẋ2 = 1

and we see that we have arrived at the given reformulation.

b. The constraint can be written as ψ(tf , x(tf )) = 0 with

ψ(tf , x(tf )) =
[

x1(tf )
x2(tf )− tf

]

The Hamiltonian of the problem is given by

H = u2x2 + λ1u+ λ2
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Using that λ̇ = −HT
x and λ(tf )T = µTψx(tf , x∗(tf ))

λ̇1 = 0, λ1(tf ) = µ1

λ̇2 = u2 λ2(tf ) = µ2

This gives λ1 = µ1, i.e. a constant. It turns out we do not need to solve for λ2.
The optimal u is the minimizer of H.

minimize
u

u2x2 + λ1u

subject to − 1 ≤ u ≤ 1

The hint gives that u = sat(−λ1/(2x2)) = sat(−µ1/(2t)).

c. Now all that remains is to find µ1. We must have

−c =
∫ tf

0
u(t) dt =

∫ tf

0
sat

(
−1µ1

2t

)
dt

The integral can be split into two parts. Since c > 0 it is clear that the control
action must be negative. Thus µ1 > 0.

∫ tf

0
sat

(
−1µ1

2t

)
dt =

∫ µ1/2

0
−1 dt+

∫ tf

µ1/2
−1µ1

2t dt

This is equal to

−µ1
2 +

[
−µ1

2 log(t)
]tf
µ1/2

= −µ1
2
(
− 1− log(tf ) + log(µ1/2)

)
µ1 is thus given by the solution to

−c = −µ1
2
(
− 1− log(tf ) + log(µ1/2)

)
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