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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

© Introduction

@ Stability and robustness

@ Specifications and disturbance models
@ Control synthesis in frequency domain
@ Case study: DVD player

L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: analytic approach
L12-L14 Controller optimization: numerical approach

L15 Course review
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L2: Stability and robustness

© stavility
a Sensitivity and robustness

e The Small Gain Theorem

e Singular values
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L2: Stability and robustness

© stavility
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Stability is crucial

Examples:

@ bicycle

@ JAS 39 Gripen

@ Mercedes A-class
@ ABS brakes
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Input-output stability

u y =8S(u)

A general system § is called input-output stable (or “L; stable”
or “BIBO stable” or just “stable”) if its L, gain is finite:

1Sl = sup I9WI

w ull
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Input-output stability of LTI systems

For an LTI system S with impulse response g(¢) and transfer
function G(s), the following stability conditions are equivalent:

@ ||S]| is bounded
@ g(t) decays exponentially

@ All poles of G(s) are in the left half-plane (LHP), i.e., all poles
have negative real part
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Internal stability

The LTI system

dx

— =Ax+B
ar TR
y=Cx+ Du

is called internally stable if the following equivalent conditions
hold:

@ The state x decays exponentially when u = 0

@ All eigenvalues of A are in the LHP
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Internal vs input-output stability

If
X =Ax + Bu

y=Cx+ Du

is internally stable then
G(s)=C(sI-A)'B+D
is input-output stable.

Warning

The opposite is not always true! There may be unstable pole-zero
cancellations (that also render the system uncontrollable and/or
unobservable), and these may not be seen in the transfer function!
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Stability of feedback loops

Assume scalar open-loop system Gy(s)

Go(s)

Y

The closed-loop system is stable if and only if all solutions to the
characteristic equation

1+Go(s) =0
are in the left half-plane.
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Simplified Nyquist criterion

If Go(s) is stable, then the closed-loop system [1 + Gy(s)]~! is stable
if and only if the Nyquist curve of Gy(s) does not encircle —1.

Imaginary Axis
==

-1 -0.5 0 0.5

Real Axis

(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)
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General Nyquist criterion

Let

@ P = number of unstable (RHP) poles in Gy(s)

@ N = number of clockwise encirclements of —1 by the Nyquist
plot of Gy(s)

Then the closed-loop system [1 + Go(s)]~! has P + N unstable poles
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L2: Stability and robustness

9 Sensitivity and robustness
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Sensitivity and robustness

@ How sensitive is the closed-loop system to model errors and
disturbances?

® How do we measure the “distance to instability”?

@ Is it possible to guarantee stability for all systems within some
distance from the ideal model?
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Amplitude and phase margins

Amplitude margin A,,:
arg Go(iwg) = —180°, |Go(iwp)| = 1/Am
Phase margin ¢,;:

|G0(iwc)| =1, arg GO(iwc) =¥m — 180°

Gillwe) [~

= [

-1 -08 06 -04 02 0 02 04 06 08 1
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Mini-problem

k(s+1)

7 —sL
s2+cs+1

-1

Nominally k =1, ¢ = 1 and L = 0. How much margin is there in each
parameter before the closed-loop system becomes unstable?

Gm = Inf, Pm =109 deg (at 1.41 rad/s)
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Mini-problem
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Sensitivity functions

.
C(s) P(s) Y
-1
S(s) ! sensitivity function
§)= ——————
1+ P(s)C(5) y
P(s)C
T(s) = (5)C(s) complementary sensitivity function

"1+ P(s)C(s)
Note that we always have

S(s)+T(s)=1
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Sensitivity towards changes in plant

C(s) P(s)

How sensitive is the closed loop to a (small) change in P?

dT C T

dP~ (1+PC? P(1+PC)

Relative change in T compared to relative change in P:

arjT 1

= =S
dP/P ~ 1+ PC
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n

! ®

Open-loop response (C = 0) to process disturbances d, v:
Yoy =V +PD

Closed-loop response:

1 P

Y= V+
<=1+ pPC T 1+PC

D=SY,
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Interpretation as stability margin

The maximum gain of the sensitivity function measures the
inverse of the distance between the Nyquist plot and the point —1:

1
e el
AIm
// -1 \\
f | ; >
,/R Re
P(iw)C(iw)
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L2: Stability and robustness

9 The Small Gain Theorem
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Robustness analysis

How large plant uncertainty A can be tolerated without risking
instability?

Example (multiplicative uncertainty):

1% w

T A(s)
P(s)

—C(s)
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The Small Gain Theorem

r €l

Sz 4—@4—

Assume that S; and S; are stable. If ||S1]| - ||Sz2]| < 1, then the
closed-loop system (from (ry, r») to (eq, €2)) is stable.

Automatic Control LTH, 2019 Lecture 2 FRTN10 Multivariable Control



The Small Gain Theorem

r €l

Sz 4—@4—

Assume that S; and S; are stable. If ||S1]| - ||Sz2]| < 1, then the
closed-loop system (from (ry, r») to (eq, €2)) is stable.

@ Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

@ Note 2: The stability condition is sufficient but not necessary, so the
results may be conservative
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Proof

er =11 +S8a(r2 + Siler))
lenll <l + 1S (1l + IS -l
ey < Il + ISl

L= ISl - 1S2 ]l
This shows bounded gain from (r(, ;) to e;.

The gain to e, is bounded in the same way.
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Application to robustness analysis

A(s)

P(s)

—C(s)

The diagram can be redrawn as

1% w
—_— > O— A -

-PC
1+PC
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Application to robustness analysis

v w
—0O0—> A >
—PC
1+PC

Assuming that T = %

guarantees stability if

is stable, the Small Gain Theorem

Al 171 < 1
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L2: Stability and robustness

0 Singular values
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Gain of multivariable systems

Recall from Lecture 1 that

S| = sup [G(iw)| = [|Glle
w
for a stable LTI system S.

How to calculate |G(iw)| for a multivariable system?

Automatic Control LTH, 2019 Lecture 2 FRTN10 Multivariable Control



Vector norm and matrix gain

For a vector x € C", we use the 2-norm

ol = Vot = Vi + o+ [

(A* denotes the conjugate transpose of A)

For a matrix A € C"™™, we use the L,-induced norm

X*A*Ax
lA]l := sup \/ = \/A(A*A)

A(A*A) denotes the largest eigenvalue of A*A. The ratio |Ax|/|x| is
maximized when x is a corresponding eigenvector.
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Example: Different gains in different directions: e 24w
2 0 3| |u

Input u=[0.309  0.951]", |ul=1
,

y=Gu=[4.42 2.85]', |y|=5.26

Y2
o
T
i
|
i
i

-5+ /
-15 -10 -5 0 5 10 15
(red):eigenvectors ; (blue): V ; (green): U A=USV
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Singular Values

For a matrix A, its singular values o; are defined as

0'i=\//1_i

where A; are the eigenvalues of A*A.

Let o(A) denote the largest singular value and o (A) the smallest
singular value.

For a linear map y = Ax, it holds that

o(4) < :y—' <7 (A)

x|

The singular values are typically computed using singular value
decomposition (SVD)
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Singular value decomposition (SVD)

Let A be an m X n complex matrix. It can be factored as

A=UXV"

where

@ U is an m X m unitary complex matrix, whose columns
represent different output directions

@ X is an m X n matrix with non-negative real numbers (the
singular values) on the diagonal, representing different gains

@ Vis an n X n unitary complex matrix, whose columns
represent different input directions

With A = G(iw), the complex directions reveal both the relative
magnitude and phase of the input/output signals with frequency w.
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Example: Gain of multivariable system

2 4
_ +1 2s + 1
G(s) = ss 53

s24+0.1s+1 s+1

>> s = zpk('s');
>> G = [2/(s*1) 4/(2*s+1); s/(s*2+0.1xs+1) 3/(s*+1)];
>> sigma(G) % plot sigma values of G wrt freq
>> [gain,w] = norm(G,inf) % infinity norm = system gain
gain =
10.3698
W:

1.0000
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Singular Values

T
System: G
1 01 i Frequency (rad/s): 0.01 4
Singular value (abs): 5.26 System: G
Frequency (rad/s): 0.997
Singular value (abs): 10.4
m
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The singular values of the transfer function matrix (prev slide). Note that
G(0) =[24; 0 3] (prev example). |G|~ = ||G(1i)]| = 10.3698.
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>> A = evalfr(G,ix1)
A =
1.0000 - 1.00001
10.0000 - 0.0000i

>> [U,S,V] = svd(A)
U=
-0.1307 + 0.1082i
-0.9855 + 0.00231
S =
10.3698 Q
% 1.4720
V =
-0.9734 + 0.00001
-0.1697 - 0.15411

. 8000
.5000

.9472
. 1557

.2292
. 7206
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1.60001
1.50001

0.27201
0.06751

0.00001
0.65441
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Summary of Lecture 2

@ Input-output stability: ||S|| < o
o Sensitivity function: S(s) := puyen)
@ Three different interpretations
@ Small Gain Theorem: The feedback interconnection of S; and
S, is stable if ||Sq]| - ||Sz]| < 1
o Conservative compared to the Nyquist criterion
@ Useful for robustness analysis

@ The gain of a multivariable system G(s) is given by
sup,, 0(G(iw)), where o is the largest singular value

@ Singular values by SVD (on computer): G(iw) = UXV*
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