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Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
L9-L11 Controller optimization: analytic approach

@ Linear-quadratic control
Q Kalman filtering
D LQG control

L12-L14 Controller optimization: numerical approach

L15 Course review
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L9: Linear-quadratic control

QDynamic programming
gThe Riccati equation
QOptimaI state feedback

Q Stability and robustness
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A general optimization setup

performance outputs z exogenous inputs w
-] [ ¢———
Plant
controller inputs y controller outputs u
> Controller

General objective: find a controller that optimizes the closed-loop
system G5, (8).

Lectures 9-11: Problems with analytic solutions

Lectures 12-14: Problems with numeric solutions
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Today’s problem: Optimal state feedback

z initial state xy
Plant
state x u
» Controller

Optimization problem:

® o [ x@ Q2] [x(®)
A, = ) 14l dt‘fo [um] [le ][um

subjectto x(f) = Ax(t) + Bu(1), x(0) =

Q12

Q= [Q is a symmetric, positive semidefinite matrix and Q2 >0
12
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Why linear-quadratic control?

@ Simple, analytic solution
@ Quadratic cost functions give linear state feedback control laws

@ Always stabilizing
@ Works for MIMO systems
@ Guaranteed robustness (in the state feedback case)

@ Foundation for more advanced methods like model-predictive
control (MPC)
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L9: Linear-quadratic control

QDynamic programming
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Dynamic programming: simple example

Determine ugy and u; if the objective is to minimize
2, .2, 2, 2
X1+ X5 + Uy + uj
when

X1=Xo+ Up

Xo=X1+U

Solution: Start at the last stage and proceed backwards to solve the
problem sequentially:

@ First find optimal u; as function of x;

@ Then find optimal 1y as function of xy
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Dynamic programming: simple example

Break the problem into smaller parts that can be solved sequentially:

min {3+ x5+ ub+ull = rnln{x1 + U +rn1n{x2 +ut} (xl)}
Uy, U

N (xl)
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Dynamic programming: simple example

Break the problem into smaller parts that can be solved sequentially:

min {3+ x5+ ub+ull = mln{x1 +ud+ mln{x2 +ut} (xl)}
Uy, U

]1(961)
Minimize by completion of squares:

: 2 2 : 1.)2,1.2
]1(x1)=rrlll11n{(x1+u1) +u1}=nlll11n{2(u1+§x1) +§x1}

%Xf with minimum attained for u; = _%xl

Jo(x0)

%x(z) with minimum attained for 1y = —

min{(xo+u0)2+u(2)+]1(x0+u0)}:min{g(u(ﬁgxo) +3 xo}
Up Up

3

5
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Quadratic optimal cost

It can be shown that the optimal cost on a time interval [, 00) is
quadratic:

® (x(1) ’ x(7)
r[Itlin)f [ ]Q[ dr=x(1)Sx(t), S=ST>0

u(r) u(7)

when
x(t) = Ax(t) + Bu(r)

and

Q12

Q= [le QZJEO’ Q>0
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Dynamic programming, Richard E. Bellman, 1957

Bellman’s principle of optimality:
An optimal trajectory on the time inter-
val [t, T] must be optimal also on each
of the subintervals [¢, t+€] and [t+€, T].
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length €,

x(t+e€)=x(t)+ (Ax(t) + Bu(t))e ase—0
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length €,

x(t+e€)=x(t)+ (Ax(t) + Bu(t))e ase—0

Invoking the principle of optimality for [f, t+¢€] and [ +€,00]:

xT(t)Sx(t) mm [X(T)] Q [x(r)

u[t,00) u(r) u(t)
. x(1) x(1) < [ x(7) x(1)
ult, oo){ [u(t)] Q u(t)] €+ft+€ [u(r)] Q [u(r) }
=min{(x" (0Qux(n + 26" (0 Quzu() + u” (D Quln)e

+ [x(t) + (Ax(D) +Bu(t))e] Ts[x(t) +(Ax(D) +Bu(t))e]}
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Dynamic programming for linear-quadratic control

Neglecting the € terms gives Bellman’s equation:

0=min{x"(NQux(1) + 2" (NQu2u(t) + u” (1 Qu()
u

227 (0S(Ax() + Bu(n)}
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L9: Linear-quadratic control

QThe Riccati equation
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Completion of squares - matrix case

Suppose Q, > 0. Then the quadratic form
xTQxx + 2xTqu u+ uTQu u
= (u+ Q' Qe Quu+ Q' Q) + xT(Qr = QuuQy ' Qi) x

is minimized w.r.t. u by
-1AT
U=-0Q, Qyx

The minimum is

x(Qx — QuuQ;' QL) x
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The Riccati equation

Completion of squares in Bellman’s equation gives
0= rrllli[n{(xtTlet +2x! Quou, + utTQzu[) +2x] S(Ax; +Bu[)}
= rr}titn{xZ[Ql +ATS+ SAlx, +2x] [Qi2 + SBlus + uf Qous}
=xf(Qi+A"S+5A-(SB+Q1) Q3 (SB+Qi2)" ),
with minimum attained for

ur=-Q; (SB+ Q)" x;
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The Riccati equation

Completion of squares in Bellman’s equation gives
0= rrllli[n{(xtTlet +2x! Quou, + utTQzu[) +2x] S(Ax; +Bu[)}

= rr}litn{xZ[Ql +ATS+ SAlx, +2x] [Qi2 + SBlus + uf Qous}

=xf(Qi+A"S+5A-(SB+Q1) Q3 (SB+Qi2)" ),
with minimum attained for

ue=-Q; (SB+ Qi) x;
The equation
0=Q+ATS+SA—-(SB+Q12)Q, (SB+Q2)T

is called the algebraic Riccati equation
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Algebraic Riccati equations in Matlab

icare Implicit solver for continuous-time Riccati equations.

[X,K,L] = icare(A,B,Q,R,S,E,G) computes the stabilizing solution X of
the continuous-time algebraic Riccati equation
-1
A'XE + E'XA + E'XGXE - (E'XB + S) R (B'XE + S') +Q =0 .

The matrices Q,R,G must be Hermitian and R,E must be invertible. When
omitted or set to [], B,R,S,E,G default to the values B=0, R=I, S=0,
E=I, and G=0. Scalar-valued Q,R,G are interpreted as multiples of the
identity matrix. icare also returns the state-feedback gain K and the
closed-loop eigenvalues L given by
-1
K=R (B'XE +5S"), L = EIG(A+GxX*E-B*K,E)

icare returns [] for X,K when there is no finite stabilizing solution.

(Note: In older versions of Matlab the command is called care)
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L9: Linear-quadratic control

Q Optimal state feedback
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Stabilizability

A system
Xx(t) = Ax(t) + Bu(r)

is called stabilizable if its uncontrollable subspace is stable.

Controllability = stabilizability

Automatic Control LTH, 2019 Lecture 9 FRTN10 Multivariable Control



Linear-quadratic control - summary

Control problem:

Minimize ]:f (xT(t)le(t)+2xT(t)Q12u(t)+uT(t)Qzu(t))dt
0

subjectto  x(f) = Ax(t) + Bu(r), x(0) = xo

Solution: Assuming a stabilizable system, there exists a unique
S =ST> 0 solving the algebraic Riccati equation

0=Q+ATS+SA—(SB+Q12)Q; (SB+Qy2)

The optimal control law is u = —Lx with L = Qz_l(SB + Q12)T.

The optimal cost is J* = xéero.
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Remarks

Note that the optimal control law does not depend on xg.

The optimal feedback gain L is static since we are solving an
infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and to problems
with time-varying system matrices. We then obtain a Riccati differential
equation for S(f) and a time-varying state feedback, u(t) = —L(1)x(%))
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Example: Control of an integrator

For x(¢) = u(1), x(0) = xo,

Minimize ]:fooo{x(t)2+pu(t)2}dt

Riccati equation 0=1-S*/p = S=p
Controller L=S/p=1/\/p = u=-x/yp
Closed loop system xX=-x/\/p = x= xoe_”‘/'5
Optimal cost J* = x3 Sxo=x3/p

What values of p give the fastest response? Why?
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Solving the LQ problem in Matlab

lgr Linear-quadratic regulator design for state space systems

[K,S,E] = 1gr(SYS,Q,R,N) calculates the optimal gain matrix K
such that:

* For a continuous-time state-space model SYS, the state-
feedback law u = -Kx minimizes the cost function

J = Integral {x'Qx + u'Ru + 2*x'Nu} dt
subject to the system dynamics dx/dt = Ax + Bu
The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation
and the closed-loop eigenvalues E = EIG(A-B*K).
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Example - Double integrator

a=[54) 5=[2) @=[y§) e o= ()

States (full) and input (dotted) for p = 0.01, p = 0.1:

4 4

24 BN 2

2! —2f
- 5 0 % 5 10
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4 4
2 2
On -7 ===
-2 -2
o 5 10 %
3
J
, «
Closed loop poles: .
522_1/2p_1/4(—1i )
-1 %
-2
3 2 3
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Stochastic linear-quadratic control

z white noise w
< ———
Plant
state x u
» Controller
Minimize J=Elz? =E{x"Qix+2x" Qrau+ u" Quu}
subject to x(t) = Ax(t) + Bu(t) + w(r)

where w is white noise with intensity R. Same Riccati equation and
solution (S, L) as in the deterministic case. The optimal cost is

J* =Ex'Sx=1tr(SR)
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L9: Linear-quadratic control

QStabiIity and robustness
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Stability of the closed-loop system

Assume that

Q12 50

Q= [Qu

and that there exists a solution S > 0 to the algebraic Riccati equation.
Then the optimal controller u(t) = —Lx(¢) gives an asymptotically
stable closed-loop system x(t) = (A— BL)x(%).

Proof:

da r o Tos_o T _ , .
dtx (NSx(t)=2x" Sx=2x" S(Ax+ Bu) = [Bellman’s equation]

—(xTQ1x+2xTQ12u+ uTQg u) <0 forx(t)#0
Hence xT(t)Sx(t) is decreasing and tends to zero as t — oo.
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Robustness of optimal state feedback

Nyquist Diagram

Imaginary Axis

Real Axis

The distance from the loop gain L(iwI — A)_lB to —1 is never smaller
than 1. This is always true when Q; >0, Q12 =0 and Q2 > 0 is scalar.
The phase margin is = 60° and the (positive) gain margin is infinite!
[For proof, see G&L Section 9.4]
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Lecture 9 - summary

@ We specify what “optimal control” means using a quadratic cost
function.

@ Solving an algebraic Riccati equation gives the optimal state
feedback law u = —Lx:

0=Q;+ATS+SA-(SB+Q12)Q, (SB+Q1)" = S
L=Q;'(SB+Qi)"

@ The LQ controller has remarkable robustness properties.
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