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L1–L5 Specifications, models and loop-shaping by hand

L6–L8 Limitations on achievable performance

L9–L11 Controller optimization: analytic approach

9 Linear-quadratic control

10 Kalman filtering

11 LQG control
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L9: Linear-quadratic control

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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A general optimization setup

Plant

Controller

✛ ✛

✛

✲

controller outputs u

performance outputs z

controller inputs y

exogenous inputs w

General objective: find a controller that optimizes the closed-loop

system Gzw (s).

Lectures 9–11: Problems with analytic solutions

Lectures 12–14: Problems with numeric solutions
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Today’s problem: Optimal state feedback

Plant

Controller

✛ ✛

✛

✲

u

z initial state x0

state x

Optimization problem:

min
u[0,∞)

J =
∫∞

0

|z|2 dt =
∫∞

0




x(t )

u(t )





T 


Q1 Q12

QT
12

Q2








x(t )

u(t )



dt

subject to ẋ(t )= Ax(t )+Bu(t ), x(0) = x0

Q =



Q1 Q12

QT
12

Q2



 is a symmetric, positive semidefinite matrix and Q2 > 0
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Why linear-quadratic control?

Simple, analytic solution

Quadratic cost functions give linear state feedback control laws

Always stabilizing

Works for MIMO systems

Guaranteed robustness (in the state feedback case)

Foundation for more advanced methods like model-predictive

control (MPC)
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L9: Linear-quadratic control

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Dynamic programming: simple example

Determine u0 and u1 if the objective is to minimize

x2
1 +x2

2 +u2
0 +u2

1

when

x1 = x0 +u0

x2 = x1 +u1

Solution: Start at the last stage and proceed backwards to solve the

problem sequentially:

First find optimal u1 as function of x1

Then find optimal u0 as function of x0

Automatic Control LTH, 2019 Lecture 9 FRTN10 Multivariable Control



Dynamic programming: simple example

Break the problem into smaller parts that can be solved sequentially:

min
u0,u1

{

x2
1 +x2

2 +u2
0 +u2

1

}

= min
u0

{

x2
1 +u2

0 +min
u1

{

x2
2 +u2

1

}

(x1)

︸ ︷︷ ︸

J1(x1)

}
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Dynamic programming: simple example

Break the problem into smaller parts that can be solved sequentially:

min
u0,u1

{

x2
1 +x2

2 +u2
0 +u2

1

}

= min
u0

{

x2
1 +u2

0 +min
u1

{

x2
2 +u2

1

}

(x1)

︸ ︷︷ ︸

J1(x1)

}

Minimize by completion of squares:

J1(x1) =min
u1

{

(x1+u1)
2 +u2

1

}

= min
u1

{

2
(

u1+ 1

2
x1

)2 + 1

2
x2

1

}

= 1

2
x2

1 with minimum attained for u1 =−1

2
x1

J0(x0) =min
u0

{

(x0+u0)
2 +u2

0 + J1(x0+u0)
}

= min
u0

{
5

2

(

u0+ 3

5
x0

)2 + 3

5
x2

0

}

= 3

5
x2

0 with minimum attained for u0 =−3

5
x0
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Quadratic optimal cost

It can be shown that the optimal cost on a time interval [t , ∞) is

quadratic:

min
u[t ,∞)

∫∞

t




x(τ)

u(τ)





T

Q




x(τ)

u(τ)



dτ= xT
(t )Sx(t ), S = ST > 0

when

ẋ(t ) = Ax(t )+Bu(t )

and

Q =



Q1 Q12

QT
12

Q2



≥ 0, Q2 > 0
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Dynamic programming, Richard E. Bellman, 1957

t t +ǫ T

Bellman’s principle of optimality:

An optimal trajectory on the time inter-

val [t , T ] must be optimal also on each

of the subintervals [t , t+ǫ] and [t+ǫ, T ].
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ǫ,

x(t +ǫ)= x(t )+ (Ax(t )+Bu(t ))ǫ as ǫ→ 0
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ǫ,

x(t +ǫ)= x(t )+ (Ax(t )+Bu(t ))ǫ as ǫ→ 0

Invoking the principle of optimality for [t , t +ǫ] and [t +ǫ,∞]:

xT
(t)Sx(t)= min

u[t ,∞)

∫∞

t




x(τ)

u(τ)





T

Q




x(τ)

u(τ)



dτ

= min
u[t ,∞)

{


x(t)

u(t)





T

Q




x(t)

u(t)



ǫ+
∫∞

t+ǫ




x(τ)

u(τ)





T

Q




x(τ)

u(τ)



dτ

}

= min
u(t )

{(

xT
(t)Q1x(t)+2xT

(t)Q12u(t)+uT
(t)Q2u(t)

)

ǫ

+
[

x(t)+ (Ax(t)+Bu(t))ǫ

]T
S
[

x(t)+ (Ax(t)+Bu(t))ǫ

]}
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Dynamic programming for linear-quadratic control

Neglecting the ǫ
2 terms gives Bellman’s equation:

0 = min
u(t )

{

xT
(t )Q1x(t )+2xT

(t )Q12u(t )+uT
(t )Q2u(t )

)

+2xT
(t )S

(

Ax(t )+Bu(t )
)}
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L9: Linear-quadratic control

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Completion of squares – matrix case

Suppose Qu > 0. Then the quadratic form

xT Qx x +2xT Qxuu +uT Quu

= (u +Q−1
u QT

xu x)
T Qu(u +Q−1

u QT
xu x)+xT

(Qx −QxuQ−1
u QT

xu)x

is minimized w.r.t. u by

u =−Q−1
u QT

xu x

The minimum is

xT
(Qx −QxuQ−1

u QT
xu)x
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(

xT
t Q1xt +2xT

t Q12ut +uT
t Q2ut

)

+2xT
t S

(

Axt +But

)}

= min
ut

{

xT
t [Q1 + AT S +S A]xt +2xT

t [Q12 +SB ]ut +uT
t Q2ut

}

= xT
t

(

Q1 + AT S +S A− (SB +Q12)Q−1
2 (SB +Q12)

T
)

xt

with minimum attained for

ut =−Q−1
2 (SB +Q12)

T xt
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(

xT
t Q1xt +2xT

t Q12ut +uT
t Q2ut

)

+2xT
t S

(

Axt +But

)}

= min
ut

{

xT
t [Q1 + AT S +S A]xt +2xT

t [Q12 +SB ]ut +uT
t Q2ut

}

= xT
t

(

Q1 + AT S +S A− (SB +Q12)Q−1
2 (SB +Q12)

T
)

xt

with minimum attained for

ut =−Q−1
2 (SB +Q12)

T xt

The equation

0 =Q1 + AT S +S A− (SB +Q12)Q−1
2 (SB +Q12)

T

is called the algebraic Riccati equation
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Algebraic Riccati equations in Matlab

icare Implicit solver for continuous-time Riccati equations.

[X,K,L] = icare(A,B,Q,R,S,E,G) computes the stabilizing solution X of

the continuous-time algebraic Riccati equation

-1

A'XE + E'XA + E'XGXE - (E'XB + S) R (B'XE + S') + Q = 0 .

The matrices Q,R,G must be Hermitian and R,E must be invertible. When

omitted or set to [], B,R,S,E,G default to the values B=0, R=I, S=0,

E=I, and G=0. Scalar-valued Q,R,G are interpreted as multiples of the

identity matrix. icare also returns the state-feedback gain K and the

closed-loop eigenvalues L given by

-1

K = R (B'XE + S'), L = EIG(A+G*X*E-B*K,E) .

icare returns [] for X,K when there is no finite stabilizing solution.

(Note: In older versions of Matlab the command is called care)
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L9: Linear-quadratic control

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Stabilizability

A system

ẋ(t ) = Ax(t )+Bu(t )

is called stabilizable if its uncontrollable subspace is stable.

Controllability⇒ stabilizability
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Linear-quadratic control – summary

Control problem:

Minimize J =
∫∞

0

(

xT
(t )Q1x(t )+2xT

(t )Q12u(t )+uT
(t )Q2u(t )

)

dt

subject to ẋ(t )= Ax(t )+Bu(t ), x(0) = x0

Solution: Assuming a stabilizable system, there exists a unique

S = ST > 0 solving the algebraic Riccati equation

0 =Q1 + AT S +S A− (SB +Q12)Q−1
2 (SB +Q12)

T

The optimal control law is u =−Lx with L =Q−1
2

(SB +Q12)T .

The optimal cost is J∗ = xT
0

Sx0.
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Remarks

Note that the optimal control law does not depend on x0.

The optimal feedback gain L is static since we are solving an

infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and to problems

with time-varying system matrices. We then obtain a Riccati differential

equation for S(t) and a time-varying state feedback, u(t)=−L(t)x(t))
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Example: Control of an integrator

For ẋ(t ) = u(t ), x(0) = x0,

Minimize J =
∫∞

0

{

x(t )
2 +ρu(t )

2
}

dt

Riccati equation 0 = 1−S2
/ρ ⇒ S =p

ρ

Controller L = S/ρ = 1/
p
ρ ⇒ u =−x/

p
ρ

Closed loop system ẋ =−x/
p
ρ ⇒ x = x0e−t /

p
ρ

Optimal cost J∗ = xT
0 Sx0 = x2

0

p
ρ

What values of ρ give the fastest response? Why?
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Solving the LQ problem in Matlab

lqr Linear-quadratic regulator design for state space systems

[K,S,E] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K

such that:

* For a continuous-time state-space model SYS, the state-

feedback law u = -Kx minimizes the cost function

J = Integral {x'Qx + u'Ru + 2*x'Nu} dt

subject to the system dynamics dx/dt = Ax + Bu

The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation

and the closed-loop eigenvalues E = EIG(A-B*K).
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Example – Double integrator

A =



0 1

0 0



 B =



0

1



 Q1 =



1 0

0 0



 Q2 =ρ x(0) =



1

0





States (full) and input (dotted) for ρ = 0.01, ρ = 0.1:

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4
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Example – Double integrator

States (full) and inputs (dotted) for ρ = 1, ρ = 10:

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4

Closed loop poles:

s = 2−1/2
ρ
−1/4(−1± i )

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Stochastic linear-quadratic control

Plant

Controller

✛ ✛

✛

✲

u

z white noise w

state x

Minimize J = E |z|2 = E
{

xT Q1x +2xT Q12u +uT Q2u
}

subject to ẋ(t )= Ax(t )+Bu(t )+w (t )

where w is white noise with intensity R . Same Riccati equation and

solution (S, L) as in the deterministic case. The optimal cost is

J∗ = E xT Sx = tr(SR)
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L9: Linear-quadratic control

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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Stability of the closed-loop system

Assume that

Q =



Q1 Q12

QT
12

Q2



> 0

and that there exists a solution S > 0 to the algebraic Riccati equation.

Then the optimal controller u(t )=−Lx(t ) gives an asymptotically

stable closed-loop system ẋ(t )= (A−BL)x(t ).

Proof:

d

dt
xT

(t )Sx(t )= 2xT Sẋ = 2xT S(Ax +Bu)= [Bellman’s equation]

=−
(

xT Q1x +2xT Q12u +uT Q2u
)

< 0 for x(t ) 6= 0

Hence xT(t )Sx(t ) is decreasing and tends to zero as t →∞.
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Robustness of optimal state feedback

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−4

−3

−2

−1

0

1

2

3

4

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

The distance from the loop gain L(iωI − A)−1B to −1 is never smaller

than 1. This is always true when Q1 > 0, Q12 = 0 and Q2 > 0 is scalar.

The phase margin is ≥ 60◦ and the (positive) gain margin is infinite!

[For proof, see G&L Section 9.4]
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Lecture 9 – summary

We specify what “optimal control” means using a quadratic cost

function.

Solving an algebraic Riccati equation gives the optimal state

feedback law u =−Lx:

0 =Q1 + AT S +S A− (SB +Q12)Q−1
2 (SB +Q12)

T ⇒ S

L =Q−1
2 (SB +Q12)

T

The LQ controller has remarkable robustness properties.
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