
FRTN10 Exercise 7. Decentralized Control, Preparations

for Lab 2

Note: Exercise 7.2 serves as preparation for Laboratory Excercise 2. You are expected

to be able to discuss around the discussion points in the lab manual and to show the

calculations leading to the suggested input-output pairing in Problem 7.2d.

7.1 A MIMO process is described by the transfer matrix

P(s) =









1

s+ 2

10
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1

s+ 5
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s+ 3


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



.

a. Compute RGA(P(0)). What input-output pairing would you recommend in a

decentralised control structure?

b. ÏÍ Assume that two identical PI controllers with gain K = 1 and integral

time Ti = 0.2 are used to control the two process outputs. The possible

pairings investigated above then correspond to the two controllers

C1(s) =







s+ 5

s
0

0
s+ 5

s






, C2(s) =







0
s+ 5

s
s+ 5

s
0






.

For each controller Ci, i = {1, 2}, compute the closed-loop system

T = PCi (I + PCi)
−1

using the command feedback and plot its step responses using step. Which

configuration works the best? Do the results agree with the RGA analysis?

7.2 Figure 7.1 shows the quadruple-tank process that will be used in Lab 2. The

goal is to control the measured levels in the lower tanks (y1, y2) using the

pumps (u1, u2). For each tank i = 1 . . . 4, mass balance and Torricelli’s law

give that

Ai
dhi

dt
= −ai

√

2�hi + qin (7.1)

where Ai is the cross-section of the tank, hi is the water level, ai is the

cross-section of the outlet hole, � is the acceleration of gravity, and qin is the

inflow to the tank. The non-linear equation (7.1) can be linearized around a

stationary point (h0
i , q0

in), giving the linear equation

Ai
d∆hi

dt
= −ai

√

�

2h0
i

∆hi + ∆qin (7.2)

where ∆hi = hi − h0
i , and ∆qin = qin − q0

in denote deviations around the

stationary point.

The flows from the pumps are divided according to two parameters γ1,γ2 ∈
(0, 1). The flow into Tank 1 is γ1k1u1 and the flow into Tank 4 is (1−γ1)k1u1.
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Figure 7.1 The quadruple-tank process.

Symmetrically, the flow into Tank 2 is γ2k2u2 and the flow into Tank 3 is

(1−γ2)k2u2.

The measurement signals are given by y1 = kch1 and y2 = kch2, where kc is

a measurement constant.

a. Let ∆ui = ui−u0
i , ∆hi = hi− h0

i , and ∆yi = yi− y0
i . Verify that the linearized

dynamics of the complete quadruple-tank system is given by

d∆h1

dt
= −

a1

A1

√

�

2h0
1

∆h1 +
a3

A1

√

�

2h0
3

∆h3 +
γ1k1

A1

∆u1

d∆h2

dt
= −

a2

A2

√

�

2h0
2

∆h2 +
a4

A2

√

�

2h0
4

∆h4 +
γ2k2

A2

∆u2

d∆h3

dt
= −

a3

A3

√

�

2h0
3

∆h3 +
(1−γ2)k2

A3

∆u2

d∆h4

dt
= −

a4

A4

√

�

2h0
4

∆h4 +
(1−γ1)k1

A4

∆u1

Introduce the input vector, u, state vector, x, and output vector, y, as

u =









∆u1

∆u2







 , x =



























∆h1

∆h2

∆h3

∆h4



























, y =









∆y1

∆y2







 .
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Verify that the linearized system can be written in state-space form as

dx

dt
=


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
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
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
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












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
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



u,

y =









kc 0 0 0

0 kc 0 0







 x,

where Ti =
Ai

ai

√

2h0
i

�
.

b. Show that the transfer matrix from u to y is given by

P(s) =































γ1c1

1+ sT1

k2

k1

·

(1−γ2)c1
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
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

where c1 = T1k1kc/A1 and c2 = T2k2kc/A2.

Hint: Use the fact that


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
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










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












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
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

c. The zeros are given by the equation

det P(s) =
c1c2

(

γ1γ2(1+ sT3)(1+ sT4) − (1−γ1)(1−γ2)
)

(1+ sT1)(1+ sT2)(1+ sT3)(1+ sT4)
= 0

which can be simplified to

(1+ sT3)(1+ sT4) −
(1−γ1)(1−γ2)

γ1γ2

= 0.

Show that the system is minimum phase (i.e., that both zeros are in the left

half-plane) if 1 < γ1 + γ2 < 2, and that the system is non-minimum phase

(i.e., that at least one zero is in the right half-plane) if 0 < γ1 + γ2 < 1.

Remember that γ1,γ2 ≥ 0.

Hint: A second-order polynomial has all of its roots in the left half-plane if

and only if all coefficients have the same sign.

In the lab, we will first study the case γ1 = γ2 ( 0.7, and then the case

γ1 = γ2 ( 0.3. In which case will the process be more difficult to control?
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d. Show that the RGA for P(0) is given by









λ 1− λ

1− λ λ









where λ = γ1γ2/(γ1 +γ2 − 1).

Based on this RGA matrix, suggest an input-output pairing in the two cases

γ1 = γ2 ( 0.7 and γ1 = γ2 ( 0.3.

7.3 Consider the MIMO process

P(s) =


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
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.

Compute the relative gain array, RGA, of P(0) and suggest an input-output

pairing for the system based on this.

Hint: The inverse of P(s) is given by

P(s)−1 =

















s+ 1 0 0

−0.1(s+ 1) 0 s+ 1

0.01(s+ 1) s+ 10 −0.1(s+ 1)

















.

7.4 Consider the following multivariable system

(

y1

y2

)

=









1

10s+ 1

−2

2s+ 1

1

10s+ 1

s− 1

2s+ 1









(

u1

u2

)

.

a. By using RGA at stationarity, decide the input-output pairing that should be

used in a decentralized control structure.

b. Assume that we want to use decentralized control, that is, we want to use a

controller that can be described by

Cdiag(s) =

(

C11(s) 0

0 C22(s)

)

.

Also, we want the control loops to be decoupled in stationarity. Give the

structure of such a controller C(s) expressed in Cdiag(s) that is capable to do

so. Hint: Use a suitable decoupling matrix.

7.5 (*) ÏÍ In this exercise we will try to design controllers for a 2 $ 2-process,

that is, a process that has 2 inputs and 2 outputs. The process is described

by the transfer function matrix
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G(s) =







4

s+ 1

3

3s+ 1

1

3s+ 1
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s+ 0.5






.

Design two different decentralized controllers for the process.

1. Decentralized control, using the RGA of the process.

2. Decentralized control, using decoupling with respect to stationarity

In both cases, use ordinary PI controllers. Use the step responses to evaluate

the performance of the loop.
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Solutions to Exercise 7. Decentralized Control,

Preparations for Lab 2

7.1 a.

RGA(P(0)) = P(0) .∗ P−T(0) =

(

−5
7

12
7

12
7

−5
7

)

Since we should avoid negative relative gains we should choose the pairing

y1 Q u2 and y2 Q u1.

b. >> s = zpk(’s’);

>> P = [1/(s+2) 10/(s+1); 1/(s+5) 5/(s+3)];

>> C1 = [(s+5)/5 0; 0 (s+5)/s];

>> T1 = feedback(P*C1,eye(2));

>> step(T1)

>> C2 = [0 (s+5)/5; (s+5)/s 0];

>> T2 = feedback(P*C2,eye(2));

>> step(T2)

The responses are seen in Figures 7.1 and 7.2. It is seen that, with C1(s),
the closed-loop system is unstable, while C2(s) produces a relatively well-

behaved stable closed-loop system. This agrees with the RGA analysis, which

suggested that the controller C1 should be avoided.

7.2 No solution provided.

7.3 We have

P(0) =

















1 0 0

0 0.01 0.1

0.1 1 0

















and

P(0)−1 =

















1 0 0

−0.1 0 1

0.01 10 −0.1

















RGA(P(0)) = P(0) .∗ (P(0)−1)T =

















1 0 0

0 0 1

0 1 0

















The RGA suggests that we should control output 1 with input 1, output 2

with input 3, and output 3 with input 2.

7.4 a. We compute the RGA for stationarity, i.e. s = 0.

RGA(G(s)) =

( s−1
s+1

2
s+1

2
s+1

s−1
s+1

)

gives

RGA(G(0)) =

(

−1 2

2 −1

)

.

Since you should avoid pairing that gives negative diagonal elements we

choose y1 Q u2 and y2 Q u1.
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Figure 7.1 Closed-loop system with controller C1 in Problem 7.1

Figure 7.2 Closed-loop system with controller C2 in Problem 7.1
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Figure 7.3 Decentralized control

b. We have that

G(0) =

(

1 −2

1 −1

)

Using a decoupled controller structure with W1 = G−1(0) and W2 = I we get

a decoupled system in stationarity. The controller is

C(s) = W1 Fdiag(s)W2 =

(

−C11(s) 2C22(s)

−C11(s) C22(s)

)

.

7.5 1. Decentralized control. First we calculate the RGA of the process,

RGA(G(0)) = G(0) .∗G−T(0) =

(

1.2308 −0.2308

−0.2308 1.2308

)

.

We see that we should choose y1 Q u1 and y2 Q u2. A resonable tun-

ing, either by pole placement or hand tuning, gives PI controllers with

parameters close to

F(s) =

(

2(1+ 1
0.5s) 0

0 2(1+ 1
0.5s
)

)

.

See figure 7.3 for step responses.

2. Decoupled control. The inverse of the static gain matrix is given by

G−1(0) =

(

4 3

1 4

)−1
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Figure 7.4 Decoupled control

Thus, for decoupling, we use W1 = G−1(0) and W2 = I. Hand-tuning of

the PI controllers gives

F(s) =

(

40(1+ 1
0.5s) 0

0 20(1+ 1
0.8s
)

)

.

See figure 7.4 for step responses.

Matlab code:

s = zpk(’s’);

G = [4/(s+1) 3/(3*s+1); 1/(3*s+1) 2/(s+0.5)];

% Decentralized control

RGA = dcgain(G).*(inv(dcgain(G))).’

F = [2*(1+1/(0.5*s)) 0;0 2*(1+1/(0.5*s))];

figure(1)

step(feedback(G*F, eye(2)),5)

title(’Decentralized control’);grid

% Decoupled design

Go = dcgain(G)

F = [40*(1+1/(0.5*s)) 0;0 20*(1+1/(0.8*s))];

figure(2);

step(feedback(G*inv(Go)*F,eye(2)),5);

title(’Decoupled design’);grid
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