
FRTN10 Exercise 8. Linear-Quadratic Control

8.1 Consider the first-order unstable process

ẋ(t) = ax(t) + u(t), a > 0

a. Design an LQ controller u(t) = −Lx(t) that minimizes the criterion

J =
∞∫

0

(
x2(t) + ρu2(t)

)
dt, ρ > 0

b. Calculate the location of the closed-loop as a function of ρ and discuss what
happens when either ρ → 0 or ρ →∞.

8.2 Consider the second-order system

ẋ(t) =
(

1 0
1 0

)
x(t) +

(
2 1
0 0

)
u(t)

y(t) = ( 5 5 ) x(t)

Design an LQ controller u(t) = −Lx(t) that minimizes the criterion

J =
∞∫

0

(
y2(t) + 5u2

1(t) + 5u2
2(t)

)
dt.

What are the poles of the closed-loop system? Also calculate the minimal
value of J when the initial state is x(0) = (−1

1 ).

8.3 Consider a process

ẋ(t) =
(
−1 0
0 −2

)
x(t) +

(
3
2

)
u(t)

Show that u(t) = −Lx(t) with

L = ( 2 −3 )

can not be an optimal state feedback designed using linear-quadratic control
theory with the cost function

J =
∞∫

0

(
xT(t)Q1x(t) + Q2u2(t)

)
dt

where Q1, Q2 > 0.

Hint: Sketch the Nyquist plot of the loop transfer function L(sI − A)−1B.
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Exercise 8. Linear-Quadratic Control

8.4 Consider the system

ẋ =
 1 −1

2 4

 x+
−4

8

u

y =
 1 1

 x

One wishes to minimize the criterion

J(T) =
∫ T

0

(
xT(t)Q1x(t) + Q2u2(t)

)
dt

Is it possible to find positive definite weights Q1 and Q2 such that the cost
function J(T) < ∞ as T →∞?

8.5 Consider the double integrator

ẋ(t) =
 0 1

0 0

 x(t) +
 0

1

u(t)

y(t) =
 1 0

 x(t)

A set of LQ controllers u(t) = −Lx(r) + Lrr(r) have been designed. L was
calculated to minimize the cost function

J =
∫ ∞

0

(
xT(t)Q1x(t) + Q2u2(t)

)
dt

and Lr was chosen to give unit static gain from r to y. The four plots in
Figure 8.1 show the step responses of the closed-loop system for four different
combinations of weights, Q1, Q2. Pair the combinations of weights given below
with the step responses in Figure 8.1.

1)

Q1 =

 1 0
0 0

 , Q2 = 0.01

2)

Q1 =

 1 0
0 0

 , Q2 = 1

3)

Q1 =

 1 0
0 1

 , Q2 = 1

4)

Q1 =

 1 0
0 0

 , Q2 = 1000

8.6 (*) We would like to control the following process with linear-quadratic optimal
control:

ẋ(t) =
 1 3

4 8

 x(t) +
 1

0.1

u(t)

y(t) =
 0 1

 x(t)
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Figure 8.1 Step responses for LQ-control of the system in Problem 8.5 with different weights
on Q1, Q2.

The penalty on x2
1(t) should be 1, and the penalty on x2

2(t) should be 2. For
u2(t) we will try different penalty values: ρ = 0.01, 1, 100.

a. Determine the cost function for the three different cases.

b. ÏÍ Assume that we want to add reference tracking so that y = r in
stationarity, using the control law u(t) = Lrr(t)− Lx(t). In Matlab, calculate
the three different resulting controllers, calculate the resulting closed-loop
poles and simulate step responses from r to x2 and from r to u. Verify that
there is no static error.

8.7 (*) Consider the double integrator

ξ̈ (t) = u(t).

with state-space representation

ẋ =
 0 1

0 0

 x+
 0

1

u

y =
 1 0

0 1

 x

where x = (ξ (t), ξ̇ (t)). You would like to design a controller using the criterion∫ ∞

0
(ξ 2(t) + η · u2(t)) dt

for some η > 0.
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Exercise 8. Linear-Quadratic Control

a. Show that S =
 s1 s2

s2 s3

 with

s1 =
√

2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. What are the closed-loop poles of the system when using this optimal state
feedback? What happens with the control signal if η is reduced?
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Solutions to Exercise 8. Linear-Quadratic Control

8.1 a. Using A = a, B = 1, Q1 = 1, Q2 = ρ, Q12 = 0 the Riccati equation becomes

2Sa+ 1− Sρ−1S = 0

The positive solution is

S = aρ +
√
(aρ)2 + ρ

and the optimal controller gain is given by

L = S
ρ
= a+

√
a2 +

1
ρ
.

b. The closed-loop pole is given by

A− BL = −

√
a2 +

1
ρ

The pole is located in the left half-plane for all ρ > 0. When ρ → 0, control
is cheap and the gain approaches ∞, while the pole approaches −∞. When
ρ → ∞, control is expensive and the gain approaches 2a, while the pole
approaches −a (actually the open-loop pole mirrored in the imaginary axis).
It is interesting to note that, since the system is unstable, the gain cannot
approach zero when control becomes expensive.

8.2 Using y(t) = Cx(t) and u(t) =
(
u1(t)
u2(t)

)
we first rewrite the cost function as

J =
∞∫

0

(
xT(t)CTCx(t) + uT(t)

( 5 0
0 5

)
u(t)

)
dt

from which we identify Q1 = CTC =
( 25 25

25 25
)
, Q2 =

( 5 0
0 5

)
and Q12 =

( 0 0
0 0

)
.

The Riccati equation is Q1 + AT S + SA− SBQ−1
2 BT S = 0. Let

S =
(
s1 s2

s2 s3

)

We get the following system of equations:

−s2
1 + 2s1 + 2s2 + 25 = 0
s2 + s3 − s1s2 + 25 = 0

25− s2
2 = 0

The positive solution is s1 = 7, s2 = s3 = 5. This gives the state feedback gain

L = Q−1
2 BT S =

(
2.8 2
1.4 1

)
.

The poles of the closed-loop system are given by det(λI − A+ BL) = 0 which
gives λ1 = −1, λ2 = −5.
The minimal value of J is given by xT(0)Sx(0) = 2.
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Solutions 8. Linear-Quadratic Control

8.3 The loop gain is
L(sI − A)−1B = 6

(s+ 1)(s+ 2)
The Nyquist curve starts on the positive real axis and will approach the
origin along the negative real axis with phase −180○ as ω → ∞. This is
not consistent with an LQ-optimal loop gain, which will always remain at a
distance ≥ 1 from the critical point −1 and will hence have an asympototic
phase of −90○. Therefore, L cannot be an LQ-optimal state feedback vector.

8.4 The system has two unstable poles in 2 and 3. If the cost function should be
less than∞ then the system must be stabilizable, i.e. all unstable poles must
be controllable (due to Q1 > 0). The controllability matrix is given by

C = (B AB) =
(
−4 −12
28 24

)

which is a rank 1 matrix. Thus, only one of the modes is controllable meaning
that there is an uncontrollable, unstable mode, and hence, we can not make
the cost function less than ∞.

8.5 3) is the only case with a cost on the velocity x2. This makes the controller
try to avoid rapid variations in x1, so we get 3) − D), the only step response
without overshoot. The weight, Q2, on the control signal determines the speed
of the system. A low weight on the control signal gives a faster system since
we are allowed to use more control signal. This reveals 1) − C), 2) − A),
4) − B).

8.6 a. The cost function is

J =
∫ ∞

0

(
xT(t)

(
1 0
0 2

)
x(t) + ρu2(t)

)
dt, ρ = 0.01, 10, 1000

b. See Figure 8.1 for step responses, and Matlab code below.

A = [1 3; 4 8]; B = [1; 0.1]; C = [0 1];

P = ss(A,B,C,0);

Q1 = [1 0; 0 2]; Q2_vector = [0.01 1 100];

clf

for i=1:length(Q2_vector)

[L,S,E] = lqr(P,Q1,Q2_vector(i));

% Calculating Lr (static gain to output should be 1)

Lr = 1/(C/(B*L-A)*B);

% Closed loop from r to u:

Gur = ss(A-B*L,B*Lr,-L,Lr);

% Closed loop from r to y:
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Figure 8.1 Step responses for different weight on control signal.

Gyr = ss(A-B*L,B*Lr,C,0);

% Plotting step responses

subplot(3,2,i*2-1)

step(Gur)

axis([0 10 -Inf Inf])

title([’Control signal, Q_2=’ num2str(Q2_vector(i))])

subplot(3,2,i*2)

step(Gyr)

axis([0 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])

poles{i} = E;

end

poles{:}

8.7 a. Weighting matrices Q1 =

(
1 0
0 0

)
and Q2 = η. The Riccati equation to be

solved with respect to S is

AT S + SA+ Q1 − SBQ−1
2 BT S = 0

Put
S =

(
s1 s2

s2 s3

)
,
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Solutions 8. Linear-Quadratic Control

which gives
(

0 0
s1 s2

)
+

(
0 s1

0 s2

)
+

(
1 0
0 0

)
−

1
η
·
(
s2

2 s2s3

s2s3 s2
3

)
= 0

We see, by insertion, that
s1 =

√
2 · η1/4

s2 = η1/2

s3 =
√

2 · η3/4

solves the Riccati equation.

b. The optimal state feedback is

L = Q−1
2 BT S = 1

η
· ( 0 1 )

(√
2η1/4 η1/2

η1/2 √
2 · η−3/4

)

=
1
η
· (η1/2 √

2η3/4) = (η−1/2 √
2 · η−1/4)

The poles are the eigenvalues to A−BL. Put µ = η−1/4 [ L = ( µ2 √
2 · µ ) .

This gives

0 = det
(
s −1
µ2 s+

√
2 · µ

)
= s2 +

√
2µs+ µ2,

that is

s = − µ
√

2
±

√
µ2

2
− µ2 = −

µ
√

2
± i · µ

√
2
=

= −
µ
√

2
· (1± i) = − 1

√
2 · η1/4

· (1± i)

If η is reduced, the distance between the poles and the origin will increase.
This means that the size of u(t) will increase.
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