
FRTN10 Exercise 14. Old Exam Problems

14.1 Write down a state-space realization for the system

G(s) =






1

(s+ 1)(s + 2)
s+ 3

(s+ 1)(s2 + 6s+ 8)







14.2 A system has the transfer function G(s) = 1
s+a, where a > 0. The input to

the system is white noise with spectral density Φn = 1. What is the spectral

density of the output?

14.3 Steve is working with a process and he wants to design a controller for it.

After identifying the transfer function P(s) he decides to try a PI controller,

CPI(s) = 0.88(1+ 1
s ). With the PI controller, the disturbance response is very

poorly damped, so he adds a lead filter. The controller is now:

C(s) = 0.88

(

1+ 1

s

)

s/1.79+ 1

s/8.94+ 1
.

The Bode diagrams of the controller and the loop transfer function can be

seen in Figure 14.1. The disturbance response is still poorly damped. You

realize that Steve has made a serious mistake when calculating his lead filter

parameters.

a. What is Steve’s mistake?

b. Improve the disturbance response by adjusting the lead filter (including the

gain K ). You have to follow the specifications:

• The cross-over frequency ω c must not change

• The high frequency gain of the controller must not increase

14.4 A linear model of an inverted pendulum on a cart is given by

Y (s) =








Y1(s)
Y2(s)









= G(s)U(s) =























ω2
0

s2 −ω2
0

1

s























U(s)

where Y1 is the pendulum angle, Y2 is the cart velocity and U (which is the

control signal) is the acceleration of the cart. Consider the control system

shown in Figure 14.2. The controller C1 is used to stabilize the pendulum.

Assume that a stabilizing controller has been designed and is given by

C1(s) =
B1(s)
A1(s)

.

a. Let us now consider design of the cart velocity loop with input r and output

y2. In order to evaluate different control designs, it is useful to analyze the

loop transfer function, Go(s) = C2(s)Gy2m, where Gy2m is the transfer function

from m to y2. Calculate Gy2m.
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Figure 14.1 Loop transfer function PC and controller C in Problem 14.3
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Figure 14.2 A block diagram for the inverted pendulum control system.

b. What can be said about performance limitations of the closed-loop system

from r to y2? Notice: You do not have to design any controllers!

c. Figure 14.3 shows four plots, where one of the plots shows the sensitivity and

complementary sensitivity function of a closed-loop system discussed in b,

with ω0 = 1 and a particular choise of C2(s). Which plot?
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Figure 14.3 Magnitude plots of S and T in problem 6.

14.5 Solve the following problems:

a. Consider the system

G2(s) =























s− 1

(s+ 1)(s+ 2)
s

(s+ 1)(s+ 2)
−6

(s+ 1)(s+ 2)
s− 2

(s+ 1)(s+ 2)























.

Calculate the poles and zeros of G2(s). Are there any limitations on the

achievable bandwidth?

b. Determine the RGA of G2(s) at ω = 0 rad/s and choose reasonable in-

put/output pairs for decentralized control. Can we expect decentralized control

to work well for low frequencies?

14.6 Assume that we can model a physical process with the following transfer

function

G(s) = (s+ a)m
(s+ b)n ,

where m = 1 < n and a, b > 0. The IMC method was used to find a controller

for this system, namely a PID controller with a lowpass filter

C(s) = K
(1+ 1

Tis
+ Tds)

(s Td

N + 1)
.

Determine what n the process must have and express K , Ti, Td and N in a,

b and the design parameter λ. What PID parameters are adjustable?
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14.7 Recall the the quadruple tank system that was examined in Laboratory Ex-

ercise 2. The transfer function from the two inputs (u1, u2) to the two outputs

(y1, y2) was

G(s) =































γ1c1

1+ sT1

(1−γ2)c1

(1+ sT1)(1+ sT3)

(1−γ1)c2

(1+ sT2)(1+ sT4)
γ2c2

1+ sT2































This time we will approach the problem by optimizing over a Q-parametrization.

The objective will be to keep the control errors (e1 = r1 − y1, e2 = r2 − y2)

small, while at the same time satisfying constraints on the maximum al-

lowable cross-coupling, i.e a change in r1 should not affect y2 too much and

vice versa for r2 to y1. For this reason we will choose r1 as well as r2 to be

exogenous inputs w (see Figure 14.4) while e1 and e2 will be our exogenous

outputs z. The signals r1, r2, y1 and y2 will all be inputs to the controller.

Hence

z =
[

r1 − y1

r2 − y2

]

w =
[

r1

r2

]

y =











y1

y2

r1

r2











a. Determine the transfer function matrix

P =








Pzw Pzu

Pyw Pyu









[

Pzw Pzu

Pyw Pyu

]

C(s)

✛ ✛

✛

✲

u

z

y

w

Figure 14.4 General form of a closed-loop system.

b. Determine the closed-loop system transfer function matrix H from w to z,

and express it in terms of Q-parametrization.

c. What indices in H are related to the objective and what indices are related

to the constraints?

14.8 A MIMO system is described by the following transfer functions:

P(s) =







1

s+ 2
− 1

s+ 2
1

s+ 1

1

s+ 4
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a. Calculate the zero(s) of the process.

b. Suppose that we want to control the process by selecting input and output

pairs for two SISO loops. How should we pair the inputs and outputs?

14.9 Consider the following process:

G(s) = 4.2

s2 + 0.12s+ 1
.

The control structure chosen is state-feedback design by minimizing the cost

function

J =
∞

∫

0

(

yT Q1y+ uT Q2u
)

dt

and a feedforward gain Lr such that we have the control signal

u(t) = −Lx(t) + Lrr(t).

Four different cost functions have been used and step responses from r to y

have been plotted for performance comparison. However, the plots have not

come in the correct order. Help the designer by pairing the correct weights

below and step responses in Figure 14.5. A cost function might suit several

step responses, give all alternatives!

A. Q1 = 1, Q2 = 10 B. Q1 = 1, Q2 = 0.01

C. Q1 = 100, Q2 = 1000 D. Q1 = 1, Q2 = 100
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Figure 14.5 Step responses for Problem 14.9
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Solutions to Exercise 14. Old Exam Problems

14.1 Partial fraction expansion gives

G(s) =
[

1
(s+1)(s+2)

s+3
(s+1)(s2+6s+8)

]

= 1

s+ 1

[

1 2
3

]

+ 1

s+ 2

[

−1 −1
2

]

+ 1

s+ 4

[

0 −1
6

]

so a realization in diagonal form can be written as

ẋ =





−1 0 0

0 −2 0

0 0 −4



 x+







1 2
3

−1 −1
2

0 −1
6






u

y = [ 1 1 1 ] x

14.2 Denote the output by z. The spectral density of z is then

Φz = pG(iω)p2 Φn(ω) =
1

iω + a

1

−iω + a
=

= 1

a2 +ω2

14.3 a. The bad damping in the disturbance response is a symptom of low phase

margin, which is approximately 20○ at ω c = 1 (as seen in the Bode diagram).

The lead filter improves the phase margin, but the phase peak is located

between the zero and pole at

ωp =
√

1.79 · 8.94 = 4 rad/s,

which is far from ω c!

b. One way to improve the control is to move the phase peak to ω c = 1 by

dividing the pole and zero by 4. The new controller is

C′(s) = K

(

1+ 1

s

)

s/0.45+ 1

s/2.24+ 1
.

The gain K should be chosen so that the cross-over frequency is preserved,

that is pC′(iω c)p = pC(iω c)p, which gives K = 0.45.

The new controller gives an increase in phase margin of 19○. The high fre-

quency gain

lim
s→∞

C(s)

actually decreases from 4.39 to 2.24.
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14.4 a. Block scheme calculations gives

Gy2m =
G2C1

1+ G1C1

= B1(s)(s2 −ω2
0)

s[A1(s)(s2 −ω2
0) + B1(s)ω2

0]

Note that this transfer function can be considered as the process in the outer

loop.

b. A process zero at z = ω0 imposes a constraint on the achievable bandwidth of

the closed-loop system—it is not possible to achieve a bandwidth significantly

larger than ω0.

c. Plot D shows too high bandwidth of the closed loop to be feasible. Plot B and

C does not fulfill the constraint S+T = 1. Plot A shows a bandwidth of about

1 rad/s which is reasonable—hence plot A.

14.5 a. The minors of size 1$ 1 are given by

s− 1

(s+ 1)(s+ 2) ,
s

(s+ 1)(s+ 2) ,
−6

(s+ 1)(s+ 2) ,
s− 2

(s+ 1)(s+ 2)

and the minor of size 2$ 2 is

det(G2(s)) =
1

(s+ 1)(s+ 2)

with the least common denominator p(s) = (s + 1)(s + 2). Thus, the system

has poles in −1, −2 and no zeros. Since all poles and zeros are in the left

half-plane, there are no fundamental limitations on the system bandwidth.

b.

RGA = G2(0).∗(GT
2 (0))−1 =









−0.5 0

−3 −1









.∗









−2 6

0 −1









=








1 0

0 1









Since the RGA is the identity matrix we can expect the system to be easily

controlled with decentralized control at low frequencies. The identity matrix

also gives us that it is suitable to pair input 1 with output 1 and input 2 with

output 2.

14.6 Using the IMC method, we set Q(s) to

Q(s) = 1

(λs+ 1)n−m
G−1(s)

giving us the controller

C(s) = (1− Q(s)G(s))−1Q(s) =
(

1− 1

(λs+ 1)n−1

)−1 (s+ b)n
(s+ a)(λs+ 1)n−1

= (s+ b)n
(s+ a)((λs+ 1)n−1 − 1)
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To match the structure of the PID controller

K

sTi

(TiTds2 + Tis+ 1)
(s Td

N + 1)

we see that we will need to choose n = 2. This leaves us with

C(s) = b2

sλa

( 1
b2 s2 + 2

bs+ 1)
( s

a
+ 1) ,

such that we can now determine the PID parameters one by one

Ti =
2

b
, Td =

1

Tib2
= 1

2b
, K = b2Ti

λa
= 2b

λa
, N = Tda = a

2b
.

Since only K depends on λ, this is the only PID parameter that we have the

possibility to tune ourselves.

14.7 a. P consist of the submatrices

P =








Pzw Pzu

Pyw Pyu









,

where

Pzw =








Pe1r1
Pe1r2

Pe2r1
Pe2r2









, Pzu =








Pe1u1
Pe1u2

Pe2u1
Pe2u2









,

Pyw =



























Py1r1
Py1r2

Py2r1
Py2r2

Pr1r1
Pr1r2

Pr2r1
Pr2r2



























, Pyu =



























Py1u1
Py1u2

Py2u1
Py2u2

Pr1u1
Pr1u2

Pr2u1
Pr2u2



























We can now determine all transfer functions that make up P :

Pzw =








1 0

0 1









= I, Pzu =








−G11 −G12

−G21 −G22









= −G,

Pyw =



























0 0

0 0

1 0

0 1



























=








0

I









, Pyu =



























G11 G12

G21 G22

0 0

0 0



























=








G

0









b. We know that H = Pzw + PzuC(I + PyuC)−1 Pyw with Q = C(I + PyuC)−1.

Thus,

H = I − G


 Q1 Q2













0

I









= I − GQ2.
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c. We know that H is the transfer function matrix from w to z. If we take a

closer look at H, we see that it consists of four transfer functions

H =








He1r1
He1r2

He2r1
He2r2









.

He1r1
and He2r2

, with indices (1, 1) and (2, 2) respectively, will correspond to

the objective. He1r2
(index (1, 2)) and He2r1

(index (2, 1)), on the other hand,

are related to the constraints. The reason being that r1 should not affect y2

(which will be visible in e2 when r2 is fixed) and vice versa for r2, y1.

14.8 a. The minors are

1

s+ 2
, − 1

s+ 2
,

1

s+ 1
,

1

s+ 4
, det P = 2s+ 5

(s+ 4)(s+ 2)(s + 1)

with the least common denominator p(s) = (s+1)(s+2)(s+4). The maximal

minor is

det P(s) = 2s+ 5

(s+ 4)(s+ 2)(s + 1)
which already has p(s) as denominator. The zeros are given by 2s + 5 = 0,

yielding s = −2.5.

14.8 b. Here RGA(0) is calculated.

G(0) =
[

0.5 −0.5

1 0.25

]

Then RGA(0) becomes

RGA(0) = G(0).∗(G(0)−1)T =
[

0.2 0.8

0.8 0.2

]

and thus output 1 should pair with input 2 and output 2 with input 1.

14.9 We see that A and C will give the same controller since we have just scaled

the weights by 100, so A and C will correspond to Step response 1 and 2.

Notice that the system is very oscillative. D has much larger weight on the

control signal, thus we will not be able to get a fast system that dampens

the oscillative system, hence D must correspond to Step response 3. B will

correspond to Step response 4. We have very small weight on the control

signal compared to output, which will give a fast system.
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