FRTN10 Exercise 14. Old Exam Problems

14.1

14.2

14.3

14.4

Write down a state-space realization for the system

G(s) = [ 1 s+3 ]
VTN G+D)6E+2) (s+1)(s%+6s+8)
A system has the transfer function G(s) = S%a, where a > 0. The input to

the system is white noise with spectral density ¢, = 1. What is the spectral
density of the output?

Steve is working with a process and he wants to design a controller for it.
After identifying the transfer function P(s) he decides to try a PI controller,
Cpi(s) = 0.88(1+ 1). With the PI controller, the disturbance response is very
poorly damped, so he adds a lead filter. The controller is now:

1) s/1.79+1

The Bode diagrams of the controller and the loop transfer function can be
seen in Figure [14.1l The disturbance response is still poorly damped. You
realize that Steve has made a serious mistake when calculating his lead filter
parameters.

. What is Steve’s mistake?

. Improve the disturbance response by adjusting the lead filter (including the

gain K). You have to follow the specifications:

e The cross-over frequency w. must not change

¢ The high frequency gain of the controller must not increase

A linear model of an inverted pendulum on a cart is given by

w5

] = G(s)U(s) = 32—1 W | us)

. YI(S)
Yis) = [Y2(S)

S

where Y7 is the pendulum angle, Ys is the cart velocity and U (which is the
control signal) is the acceleration of the cart. Consider the control system
shown in Figure [14.2l The controller C; is used to stabilize the pendulum.
Assume that a stabilizing controller has been designed and is given by

C(s) = iii;

. Let us now consider design of the cart velocity loop with input » and output

y2. In order to evaluate different control designs, it is useful to analyze the
loop transfer function, G,(s) = C2(s)Gy,m, where G, is the transfer function
from m to yo. Calculate Gy,,.
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Figure 14.1 Loop transfer function PC and controller C in Problem [14.3]
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Figure 14.2 A block diagram for the inverted pendulum control system.

b. What can be said about performance limitations of the closed-loop system
from r to y9? Notice: You do not have to design any controllers!

c. Figure [14.3]shows four plots, where one of the plots shows the sensitivity and
complementary sensitivity function of a closed-loop system discussed in b,
with wo = 1 and a particular choise of Cq(s). Which plot?



14.5

14.6

a.
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Figure 14.3 Magnitude plots of S and T in problem 6.

Solve the following problems:

Consider the system

s—1 s
(s+1)(s+2) (s+1)(s+2)
—6 s—2
(s+1)(s+2) (s+1)(s+2)

G2 (S) =

Calculate the poles and zeros of Gga(s). Are there any limitations on the
achievable bandwidth?

Determine the RGA of Ga(s) at w = 0 rad/s and choose reasonable in-
put/output pairs for decentralized control. Can we expect decentralized control
to work well for low frequencies?

Assume that we can model a physical process with the following transfer

function
(s+a)™

(s +0)"
where m =1 < n and a, b > 0. The IMC method was used to find a controller
for this system, namely a PID controller with a lowpass filter

G(s) =

(1+ 75 + Tus)

Cl) =K n 1y

Determine what n the process must have and express K, T;, T; and N in a,
b and the design parameter A. What PID parameters are adjustable?
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14.7

14.8

Recall the the quadruple tank system that was examined in Laboratory Ex-
ercise 2. The transfer function from the two inputs (z1, ug) to the two outputs
(y1, y2) was

yic1 (1—)c
14T (1+sT1)(1+sTs)
G(s) =
(1—21)ee Y2C2
(1 +ST2)(1 +ST4) 1+ sTy

This time we will approach the problem by optimizing over a @-parametrization.
The objective will be to keep the control errors (e; = r; — y1, eg = ro — y2)
small, while at the same time satisfying constraints on the maximum al-
lowable cross-coupling, i.e a change in r; should not affect y; too much and
vice versa for ro to y;. For this reason we will choose r; as well as ro to be
exogenous inputs w (see Figure [14.4) while e; and ey will be our exogenous
outputs z. The signals rq, ro, y1 and y will all be inputs to the controller.
Hence

y1

[7'1—3’1] [7'1] ¥y
zZ = w = y =
rg —ye ro Al

ra

. Determine the transfer function matrix

P=[Pzw PZU]

P,, Py,
V4 w
-] [Pzw qu] e
Py, Pylie
y u
2 C(s)

Figure 14.4 General form of a closed-loop system.

. Determine the closed-loop system transfer function matrix H from w to z,

and express it in terms of Q-parametrization.

. What indices in H are related to the objective and what indices are related

to the constraints?

A MIMO system is described by the following transfer functions:

1 1
s+ 2 s+ 2

P(s) = 1 1
s+1 s+4
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a. Calculate the zero(s) of the process.

b. Suppose that we want to control the process by selecting input and output
pairs for two SISO loops. How should we pair the inputs and outputs?

14.9 Consider the following process:

4.2

Gs)= — =
)=z o195 1 1

The control structure chosen is state-feedback design by minimizing the cost
function

o
J= [ (" Qu+uTQu) ar
0
and a feedforward gain L, such that we have the control signal
u(t) = —Lx(t) + L,r(¢).

Four different cost functions have been used and step responses from r to y
have been plotted for performance comparison. However, the plots have not
come in the correct order. Help the designer by pairing the correct weights
below and step responses in Figure [14.5l A cost function might suit several
step responses, give all alternatives!

AQ =1 Q=10 B.Qi=1 Q=001
C. Q1 = 100, @, = 1000 D. Q=1 Q=100
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Figure 14.5 Step responses for Problem [14.9]
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Solutions to Exercise 14. Old Exam Problems

14.1 Partial fraction expansion gives

G(s) = [ (s+1)1(s+2) (s+1)(ss_5—?-63+8) ]
:s—il-l[l %]—l_s—ll-Q[_l _% ]+s—|1-4[0 _%]

so a realization in diagonal form can be written as

-1 0 0 1 3
k=10 -2 0 |x+|-1 —3]u
0O 0 -4 0 _%

y=[1 1 1]x

14.2 Denote the output by z. The spectral density of z is then

1 1
&, = |G(iw)|2 P = =
e =GE) @nlw) = 722 =
1

a? + w?

14.3 a. The bad damping in the disturbance response is a symptom of low phase
margin, which is approximately 20° at w, = 1 (as seen in the Bode diagram).
The lead filter improves the phase margin, but the phase peak is located
between the zero and pole at

wp = V179894 =4rad/s,

which is far from w,!

b. One way to improve the control is to move the phase peak to w, = 1 by
dividing the pole and zero by 4. The new controller is

o 1)5/0.45 + 1
C(s)_K(Hs s/224+1

The gain K should be chosen so that the cross-over frequency is preserved,
that is |C'(iw.)| = |C(iw.)|, which gives K = 0.45.
The new controller gives an increase in phase margin of 19°. The high fre-
quency gain

lim C(s)

S§— 00

actually decreases from 4.39 to 2.24.
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144 a.

14.5 a.

14.6

Block scheme calculations gives

G:C1 Bi(s)(s*> — wp)
14+ G1C1 s[A1(s)(s2 — w?) + Bi(s)w?]

Gyzm =

Note that this transfer function can be considered as the process in the outer
loop.

. A process zero at z = w( imposes a constraint on the achievable bandwidth of

the closed-loop system—it is not possible to achieve a bandwidth significantly
larger than wy.

. Plot D shows too high bandwidth of the closed loop to be feasible. Plot B and

C does not fulfill the constraint S +7T = 1. Plot A shows a bandwidth of about
1 rad/s which is reasonable—hence plot A.

The minors of size 1 x 1 are given by

s—1 s —6 s§s—2
(s+1)(s+2) (s+1)(s5+2) (s+1(s+2) (s+1)(s+2)

and the minor of size 2 x 2 is

1

det(G2(s) = T+ 2)

with the least common denominator p(s) = (s + 1)(s + 2). Thus, the system
has poles in —1, —2 and no zeros. Since all poles and zeros are in the left
half-plane, there are no fundamental limitations on the system bandwidth.

RGA = G2(0).*(G5 (0)) " = [__O: _01] - [_02 _61] N [(1J (1)]

Since the RGA is the identity matrix we can expect the system to be easily
controlled with decentralized control at low frequencies. The identity matrix
also gives us that it is suitable to pair input 1 with output 1 and input 2 with
output 2.

Using the IMC method, we set Q(s) to

1 1
Q(s) = WG (s)

giving us the controller

-1 n
C(s) = (1 - Q(s)G(s))'Q(s) = (1 " (s +11)”‘1> (s + a(;(jl_sb}r -t
(s+d)"

- (s+a)((As+ 1)1 —1)
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To match the structure of the PID controller

£ (TdeS2 + TiS + 1)
sT; (sT2 +1)

we see that we will need to choose n = 2. This leaves us with

C()_b_2(bi232+%s+1)
%)= sia t+1) 7

such that we can now determine the PID parameters one by one

1 1 LT, 2b
K = ! = N = Tda: i

2
T'i = 7 T = - > N
¥ YT T2 2 o Ja 2b

Since only K depends on A, this is the only PID parameter that we have the
possibility to tune ourselves.

14.7 a. P consist of the submatrices

yw yu
where
¢ ) \
Pel"l P€1r2 Pe1u1 Pe1u2
Pzw = 5 qu = 5
Pez"l P€27'2 Pe2u1 Pezuz
(
Pylrl Pyl"z ) ( Pylul Pyluz
P _ Pyzrl Pyz"z P = Pyzul Pyzuz
G I 2 P S B & P
riry rirg riug riug
Przrl Przrz Przul Przuz

We can now determine all transfer functions that make up P:

(1 0 —Gu1 —G
P, = =1, qu=[ H 12]=_G;
1 —Go1 —Go2
(0 0 Gu G2
00 0 Ga1 Goo G
P = = 5 P = =
T 1 0 [ I ] T 0 o0 [ 0 ]
0 1) 0 0

b. We know that H = P,, + P,,C(I + PyuC)_lew with @ = C(I + PyuC)_l.
Thus,

H=1-G (@ @) [?] —1-GQ.
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C.

14.8 a.

14.8 b.

14.9

10

We know that H is the transfer function matrix from w to z. If we take a
closer look at H, we see that it consists of four transfer functions

H: [Helrl Helr2] .
He2r1 He2r2

H,,, and H,,,,, with indices (1, 1) and (2, 2) respectively, will correspond to
the objective. H,,,, (index (1,2)) and H,,,, (index (2, 1)), on the other hand,
are related to the constraints. The reason being that r; should not affect ys
(which will be visible in eg when ry is fixed) and vice versa for rg, y;.

The minors are

1 1 1 1 det P 2s+5
> T ’ ’ s € =
s+2 s+2 s+1 s+4 (s+4)(s+2)(s+1)

with the least common denominator p(s) = (s+1)(s +2)(s +4). The maximal

minor is
25+ 5

(s+4)(s+2)(s+1)

which already has p(s) as denominator. The zeros are given by 2s + 5 = 0,
yielding s = —2.5.

det P(s) =

Here RGA(0) is calculated.

G(0) = [0.5 —0.5]

1 0.25

Then RGA(0) becomes

RGA(0) = G(0).+(G(0) )" = [0-2 0-8]

0.8 0.2

and thus output 1 should pair with input 2 and output 2 with input 1.

We see that A and C will give the same controller since we have just scaled
the weights by 100, so A and C will correspond to Step response 1 and 2.
Notice that the system is very oscillative. D has much larger weight on the
control signal, thus we will not be able to get a fast system that dampens
the oscillative system, hence D must correspond to Step response 3. B will
correspond to Step response 4. We have very small weight on the control
signal compared to output, which will give a fast system.
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