
FRTN10 Multivariable Control

Laboratory Session 3

Kalman Filtering and LQ Control of the MinSeg Robot1

Department of Automatic Control

Lund University

1. Introduction

In this laboratory session we will develop Kalman filters and a linear-quadratic (LQ)
controller for the MinSeg™ balancing robot, see Figure 1.

Figure 1 The MinSeg™ balancing robot.

The aim of the lab is to develop a working controller for balancing the robot and let
it follow a square-wave wheel position reference signal. We will first design two Kalman
filters to extract state information from the raw gyro, accelerometer, and wheel encoder
signals. Then we will design an LQ controller for state feedback from the estimated states
with optional integral action and reference tracking.

Pre-lab assignments

Read this document and complete all assignments marked as (Preparatory). Helpful lec-
tures to review are lectures 9–11 on LQ control, Kalman filtering, and LQG control. Parts
of lecture 3 concerning stochastic processes and their spectrum are also useful.

1Written by Anton Cervin, latest update September 30, 2019.

1

Figure 2 Definition of x, y, and z axes, tilt angle α and wheel angle θ (adapted from [1]).

2. The Process

The drivetrain of the MinSeg is a Lego NXT DC motor equipped with wheels. An Arduino
Mega 2560 microcontroller drives the motor and reads sensor data. During the lab the
MinSeg will be connected to a PC via a USB connector. This allows the Arduino to be
programmed, plot data to be read, and parameters to be updated during runtime.

The MinSeg is equipped with two sensor units. The first is a rotational encoder, built into
the Lego NXT motor, which gives the wheels’ rotational position around the wheel axle;
we call this angle θ. In the conditions of the lab, no wheel slippage will occur, so this angle
the directly corresponds to backward and forward position of the robot.

The second sensor unit is the inertial measurement unit (IMU). It is part of the board on
top of the Arduino Mega. An IMU consists of two sensors: a gyro and an accelerometer.
A gyro gives the angular velocities around its coordinate axes, while the accelerometer
gives the acceleration along the axes. Figure 2 shows the x, y and z axes of the IMU’s
coordinate system. Figure 2 also shows the robot’s tilt angle, α.

In order to properly control the process an accurate estimate of its state needs to be found.
Without going into details of the dynamics of the system, we say that the state consists
of four state variables: The angle of rotation of the wheels, θ, and the tilt angle, α, as well
as their time derivatives. Since we only measure two of these states directly, θ and α̇, and
both of those measurements are noisy, the state estimate needs to be formed by filtering
of the data provided from the IMU and the wheel encoder.

3. The Lab Interface

We will use Simulink with Simulink Coder (formerly Real-Time Workshop) for modeling
and implementation of the filters and controllers. The main diagram is shown in Figure 3.

The model is configured by five variables in the Matlab workspace; these variables are
IMU Kalman D, Wheel Kalman D, Feedback Gain, Integral Gain, and Ts. When the simulink

2

u

Motor

theta_enc

Wheel encoder

x1,x2

alphadot_gyro

alpha_accel

IMU

IMU_Kalman_D

IMU Kalman filter u

K*u

Feedback gain

x3,x4,ref

Wheel_Kalman_D

Wheel Kalman filter

0

Output gain

K Ts

z-1
Integrator

-K-
Integral gain

theta

reference

Figure 3 Simulink model lab3.slx for filter and controller implementation.

model is run, it will read these variables, compile the resulting controller and upload it
to the MinSeg. To design our controller we simply assigning different kalman filters and
feedback gains to the workspace variables. When the model is first opened, default (zero)
values for the controller variables are automatically defined.

The last variable, Ts, is the sample time for the controller. We will be working with a
sample time of 25 ms. This value is a trade-off between control performance and plotting
speed.

Assignment 1. Download lab3 files.zip from the course homepage and extract the
contents to some suitable working directory. In a terminal window, type

VERSION=R2016a matlab

to start Matlab R2016a. Once Matlab has started, go into the lab3 files directory and then type

setup lab3

to setup the paths to the Matlab/Simulink support packages and the Simulink libraries for the
Arduino and MinSeg hardware. Please note: It’s important that you run this command directly
after starting Matlab, and then never again.

Open up and explore the Simulink model lab3.slx. Make sure that you understand how the
IMU, Wheel encoder and Motor blocks relate to the real MinSeg robot. Furthermore, make sure the
current value of Ts is 25 ms. 2

4. Tilt Angle Measurements

First we will focus on the measurements that will form our estimation of the tilt angle, α, and its
derivative, α̇. These measurements will be taken from the IMU. The gyro gives us a noisy signal
proportional to α̇, while the accelerometer data together with some trigonometry can give a rough
estimate of α.

4.1 Calibration

The IMU needs to be calibrated. Both the gyro and the accelerometer have an offset that needs
to be corrected by adding a bias to the raw signal. This offset can also drift slightly so the IMU
might need recalibration during the lab.

3

Assignment 2. Connect the MinSeg to the computer using the USB cable. Check that the COM
port is properly defined in the Simulink model under Simulation / Model Configuration Parameters
/ Hardware Implementation / Host-board connection. (Switching from Manually to Automatically and
back to Manually again normally sets it right.)

Click “Run” in the Simulink model and wait about 60 seconds for the diagram to be compiled and
uploaded to the Arduino. (If you get an error message, ask the lab supervisor for help.) When the
model is running, open up the IMU subsystem and study the raw signals from the x gyro and from
the z and y accelerometers. Rotate the robot in different directions by hand and verify that the
signals seem to behave as expected. 2

Assignment 3. Lay the robot flat on its back (battery case towards the table) and calibrate
the x gyro and y accelerometer readings to zero (approximately, on average) by entering suitable
values for the offsets xvel bias and yaccel bias. Then balance the robot in the upright position as
well as you can and calibrate the z accelerometer reading to zero by similarly adjusting zaccel bias.

Make sure you zoom in enough. The biases need to be set within an accuracy of at least 25-50. 2

The raw values of the gyro and the accelerometer can drift slightly during operation, so the cali-
bration procedure might be needed to be repeated later during the lab session.

4.2 Angle Measurement

The gyro gives us a direct, but noisy, measurement of the angular velocity, i.e. α̇, but we have no
direct measurement of α. A rough estimate can be formed by looking at the components of the
data given by the accelerometer.

When the device is sitting still, the three acceleration components ax, ay, and az will add up as√
a2x + a2y + a2z = 9.81 m/s2

As long as the robot is stationary and not tilting sideways (ax = 0), we can use the geometric
relationship indicated in Figure 2 and calculate the tilt angle according to

α = atan2(az,−ay)

The accelerometer signals are noisy and they also pick up any external forces acting on the IMU
chip (remember F = m ·a), making the calculation above meaningful only for low-frequency signal
components (below, say, 1 rad/s).

Assignment 4. Look at the alpha accel scope in the IMU block of the Simulink model. Does
the measurement correctly describe the tilt angle when the MinSeg is stationary? Move the MinSeg
forward and backward without tilting it. Does the measurement of the angle seem correct? 2

4.3 Measurement Noise Identification

The IMU block in the Simulink model returns the calibrated and rescaled values of α and α̇ and
these are now considered as two of our noisy measurements. In order to design good filters we
would like to know more about the noise characteristics.

Assignment 5. Keep the robot completely still for 1000 · Ts seconds and then hit “Stop”.
The 1000 most recent measurements are automatically stored in the workspace in the variables of
alphadot gyro and alpha accel. For the first measurement (alphadot gyro), plot the signals, remove
any linear trends, calculate their variance and save it in variable, and plot their spectra, using:

plot(alphadot gyro) % plot
y1 = detrend(alphadot gyro,'linear'); % remove linear trend
plot(y1) % plot again
pwelch(y1) % plot periodogram (estimate of spectrum)
y1var = var(y1); % calculate stationary variance

4

1
s

1
s

Σ Σ

wα α̇ α

n1 n2

y1 y2

Figure 4 Model of the IMU for design of the first Kalman filter.

(Work in a Matlab script for this and all other assignments so the everything can be repeated
easily.)

How white is the measurement noise? What is the stationary variance? Answer the same questions
for the measurement given by alpha accel. Make sure to record the values of y1var and y2var for
later use. 2

5. Tilt Angle Estimation

We will use a Kalman filter to reduce the effect of the noise on our measurements y1 and y2 of α̇
and α. Kalman filters need a model of the dynamics, and the simplest possible choice is to simply
consider the robot dynamics as completely unknown and describe them using some process noise
in the form of an external angular acceleration wα. The system can then be modeled as a double
integrator from wα to the tilt angle α, see Figure 4.

The noise parameter wα contains all dynamics from the motor and the inverted pendulum and is
in reality non-white noise. However, since the aim is simplicity we will assume it is white noise
with intensity R1. The downside of this modeling choice is of course that the resulting filter won’t
be as good as it could be, but it will be adequate for this application.

Assignment 6 (Preparatory). Convert the model in Figure 4 to state-space form using
the state vector (x1

x2
) = (α̇α). What dimensions and structure do the process and measurement

noise intensity matrices R1, R2, and R12 have in this case? Assume that the noise processes are
uncorrelated.

Setting R2 = I, write down the algebraic Riccati equation and the resulting set of quadratic
equations involving the elements of the error covariance matrix P = (p1 p2p2 p3). Would it be easy to
solve these equations by hand?

Using lqe in Matlab, calculate the Kalman filter gain K and the resulting observer poles for some
different values of R1 (very large and very small). How is the relative size of R1 compared to R2

influencing the speed of the observer? 2

Assignment 7. Design the Kalman filter for α̇ and α in Matlab, using the measured values of
R2 from Assignment 5 and some arbitrary value for R1 as a starting point. Using ss, formulate
the Kalman filter as a state-space system imu kalman according to

dx̂(t)

dt
= (A−KC)x̂(t) +Ky(t)

x̂(t) = I x̂(t)

The system should have two inputs and two outputs in order to match the Simulink model.

Plot the Bode magnitude diagram of the filter using bodemag and interpret what you see. How
are the measurements y1 and y2 combined to produce the estimates x̂1 and x̂2 respectively? For
balancing, the filter bandwidth from y1 to x̂1 should be at least 50 rad/s and from y2 to x̂2 about
1 rad/s.

5

1
s

1
s Σ

wθ θ̇ θ y3

n3

Figure 5 Model of the wheels for design of the second Kalman filter.

Finally, convert the filter into a discrete-time system IMU Kalman D using c2d and first-order hold
sampling1 as follows:

IMU Kalman D = c2d(imu kalman, Ts, 'foh');

“Run” the Simulink model and try the Kalman filter on the real process. Tilt the robot by hand
and observe how fast the estimates x̂1 and x̂2 are following the movements. Hit “Stop”, repeat the
whole procedure with different design matrices and observe the difference in tracking speed. 2

6. Wheel Position Estimation

With a filter for two of our state variables, we turn to designing a second Kalman filter for estimating
the wheel angular speed θ̇ and position θ. For this we will utilize the rotational encoder of the motor
which will give us our last measurement y3.

Similar to before, we will model most of the dynamics as unknown process noise on a double
integrator. Furthermore, the noise contains the response of the motor on changes in the applied
voltage and the inertia of the robot. A model of the subsystem is shown in Figure 5.

Unlike earlier, we now only have one measurement, the output from the encoder. This signal is
not very noisy but is quantized with a resolution of 0.5 degrees, resulting in uncertainties. The
measurement noise of the model, n3, represents this quantization error of the wheel encoder.

Assignment 8 (Preparatory). Convert the model in Figure 5 to state-space form using the
state vector (x3

x4
) =

(
θ̇
θ

)
. Assuming the relative noise intensities

R1 = ω4, R2 = 1,

show that the algebraic Riccati equation for the Kalman filter has the solution

P =

√2ω3 ω2

ω2
√

2ω


and that the resulting observer poles are given by the characteristic equation

s2 +
√

2ωs+ ω2 = 0.

(We have hence shown that, for this problem, placing the two observer poles in the standard pattern
with ±45◦ angle from the negative real axis is optimal.) 2

Assignment 9. Design the Kalman filter for θ̇ and θ in Matlab. Aim for a filter bandwidth
of at least 50 rad/s. Formulate the Kalman filter as a state-space system wheel kalman using ss

(see Assignment 6). The system should in this case have one input and two outputs to match the
Simulink model. Then convert it into discrete time and save it to Wheel Kalman D using

Wheel Kalman D = c2d(wheel kalman, Ts, 'foh');

Finally, hit “Run” and try the Kalman filter on the real process. Turn the robot wheels by hand
and verify that the estimates x̂3 and x̂4 seem to behave as expected. 2

1You can learn more about discretization and implementation methods in FRTN01 Real-Time Systems.

6

7. Design of LQ State Feedback

With filters for all of our state variables we now turn to modeling and controlling the dynamics of
the robot to make it balance in the upright position (α = 0).

First-principles modeling of the motor, wheels and body of the robot gives a set of nonlinear differ-
ential equations, see [2] for details. Linearization of these equations around the upright equilibrium
gives the following linear model:

α̈ = −3.1α̇+ 58.4α+ 62.7θ̇ − 148u

θ̈ = 40.1α̇− 318α− 766θ̇ + 1808u

The control signal u represents the motor voltage (limited to ±3.25 V for power over USB). Using

the state vector x = (α̇ α θ̇ θ)
T

we can write this as

ẋ =


−3.1 58.4 62.7 0

1 0 0 0

40.1 −318 −766 0

0 0 1 0

x+


−148

0

1808

0

u

Assignment 10 (Preparatory). Calculate the poles of the linear robot model using Matlab.
The fastest pole is related to the motor dynamics. Explain why there is a pole located in the
origin—how does it relate to the dynamics of the real robot? Are there any fundamental limitations
imposed by the dynamics? 2

We will use diagonal weight matrices for our LQ design. Suitable first guesses of weight matrices
are

Q1 =


1
m2

1

1
m2

2

1
m2

3

1
m2

4

 Q2 =
1

m2
u

where mi and mu are the rough magnitudes of the intended working ranges of the states and
control signal. For example, the maximum speed of the wheels, θ̇, is around 2π rad/sec, a reasonable
working range, m3, must be smaller than that or the controller might be to aggressive, resulting in
saturation problems. On the other hand, too small of a working range would result in a controller
unwilling to make the fast movements necessary to balance.

Assignment 11 (Preparatory). Come up with initial choices of mi and mu. The control
signal, u, can’t exceed 3.25 V and the robot can’t recover from a tilt angle, α, greater than a few
degrees (≈ 0.05 rad). For the m1, i.e. the working range for α̇, use your knowledge of the poles of
the system and base it on your working range of α.

Assignment 12. Define the system matrices with your initial values of the design weights Q1

and Q2 in Matlab and then calculate an LQ controller for the robot using lqr:

Feedback Gain = lqr(A,B,Q1,Q2)

Simulate the closed-loop response to the initial condition α = 0.04 rad (all other states zero):

syscl = ss(A-B*Feedback Gain,[],[eye(4);-Feedback Gain],0);
x0 = [0 0.04 0 0];
initial(syscl,x0,1);

The plot shows the response of the four states as well as the control signal (in the fifth subplot).
The tilt angle should recover within about 1 s, while the wheel angle could take much longer to
recover. At the same time, the control signal magnitude should not exceed 3.25 V. Adjust the
design weights and repeat the above procedure until you have a controller that seems reasonable.
2

7

Assignment 13. Check if the IMU needs to be recalibrated and do so if needed.

For the controller that performed well in the simulations; run the Simulink model and test the
controller on the MinSeg. Balance the robot by hand in the upright position and make sure that
the control signal u looks reasonable. Finally, set the Output gain to 1 to activate the controller.
To stop the controller, set the Output gain back to 0 and hit “Stop”.

Does it work? If yes, see whether you can improve the behavior by playing with the design weights.

Common problems if it is unable to balance:

• Check if the IMU needs to be recalibrated.

• Check that the wheel are not rubbing against the body of the MinSeg.

2

8. Integral Action and Reference Tracking

Now that we have managed to balance the robot, we want to control its position on the table
by specifying a reference for the wheel angle θ. (The reference is a square wave in the Simulink
diagram.) However, we have no way of specifying this requirement in our original LQ problem, so
to do this we need to add another state to our model. We add the new state as an integrator

ẋi = r − x̂4

where x̂4 is the estimated wheel position from the second Kalman filter. xi is added as an integrator
since we always want the control error going to zero, regardless of disturbances.

We can now extend our model to include xi and design a new LQ feedback for our expanded state
space model. Matlab has a specific command, lqi, that does this for all the outputs of a state
space model, since this is a common thing to do. However, the new integrator state is not present
in the real process. Therefore, the integration needs be performed in the controller itself. In the
Simulink model a block that integrates this error has already been included.

Assignment 14. Use lqi to design an extended state feedback vector Le = (L li) that can
be used in the extended control law

u = −Lx̂− lixi.

Proceed in Matlab as follows:

Qi = ... % Integral state penalty
Q1e = blkdiag(Q1,Qi) % Extended Q1 matrix
sys = ss(A,B,[0 0 0 1],0) % Define system with theta as the only output
Le = lqi(sys,Q1e,Q2) % Calculate extended feedback gain vector
Feedback Gain = Le(1:4) % Extract L
Integral Gain = Le(5) % Extract li

Hit “Run” and test the controller. If the system seems stable, activate the theta reference by
entering a suitable Amplitude value for the square wave like π. Does it work well? Does it suffer
from wind up? If needed, go back and tune the Kalman filters or the state feedback further. 2

8

9. Summary and Evaluation

Assignment 15. Answer the following questions and hand in this sheet of paper (or use a
separate piece of paper):

1. Write down the most important lessons learned by designing “optimal” filters and controllers
for the MinSeg robot.

2. This was the second time this lab was given. What could be improved for future editions?

2

References

[1] Angle estimation using gyros and accelerometers (lab PM), January, 2018. Division of Auto-
matic Control, ISY, Linköping University, Sweden.

[2] Brian Howard and Linda Bushnell. Enhancing linear system theory curriculum with an inverted
pendulum robot. In Proc. American Control Conference, 2015.

9

