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This is a simulation exercise in FRTN15 Predictive Control. It should give
you an introduction to adaptive control, in particular Model Reference Adap-
tive Systems (MRAS). The systems are modeled and simulated in the Mat-
lab/Simulink environment. For those not familiar with Matlab/Simulink, this
exercise will also serve as an opportunity for you familiarise yourself with
the software. The more you experiment and ask, the more you learn.

1. Feed-forward adaption with MIT-rule

Let p = d/dt and consider a stable SISO process, y(t) = G(p)u(t), with

G(p) = k
p+ 1

(1)

for some unknown k > 0, and a reference model, ym = Gm(p)uc, with

Gm(p) =
k0

p+ 1
, (2)

for some known parameter k0 > 0. The problem is to construct a feedback
u(t) for the process in (1), which makes its output y(t) behave as the output
ym(t) when controlled by uc(t). If such a feedback can be established, then
the unknown process may be controlled with an outer feedback law designed
for the reference model. Clearly, if k is known, the problem can be solved by
a simple proportional controller, letting

u(t) = θ(t)uc(t), (3)

with θ(t) = k0/k for all times. To see this, plugging in the controller yields

y(t) =
( k
p+ 1

)
u(t) =

( k
p+ 1

)
θ(t)uc(t) =

( k0
p+ 1

)
uc(t) = Gm(p)uc(t) = ym(t)

(4)
However, if the gain of the process is unknown, such a controller cannot be
implemented. Instead, we must find a way of adaptively choosing θ(t).

1.1 Adapting a feed-forward gain with the MIT-rule
The most intuitive way of accomplishing the model matching, with y(t) →
ym(t) as t → ∞, is to define an error between the process response and the
reference model response and attempt to minimise it. Let

e(t) , y(t) − ym(t) = G(p)θ(t)uc(t) − Gm(p)uc(t). (5)

In order to minimise this error, we define a a positive definite function
E(e) , (1/2)e2 of the error, which depends on both t and θ . Then we obtain

dE(e)
dt

=
1
2
· 2e · de

dt
= e de

dθ
dθ
dt
. (6)

1



By defining a parameter update law with some constant α > 0, as

dθ(t)
dt

, −α
(
e de
dθ

)
[

dE(e)
dt

= −α
(
e de
dθ

)2
≤ 0, (7)

the error will decrease with time, with E(e) ≤ E(e(t0)). Updating the param-
eter estimate in this way is known as the MIT-rule. Furthermore, the partial
derivative of e(t) with respect to θ becomes,

de
dθ

=
d
dθ
(G(p)θ(t)uc(t) − Gm(p)uc(t)) (8)

= G(p)uc(t) =
k
k0
Gm(p)uc =

k
k0
ym(t) , β ym(t) (9)

for some constant β > 0 since k, k0 > 0. The constant β is not known, but it
will be positive and constant. Therefore, by defining γ , αβ > 0, we get

dθ(t)
dt

= −α
(
e de
dθ

)
= −αβ e(t)ym(t) = −γ e(t)ym(t) (10)

As ym(t), y(t) and θ(t) are known at all times, the feedback defined in (10)
may be implemented as shown in the block diagram below (see Figure 1).

Figure 1 Block diagram (left) and functional Simulink implementation (right) of
the MRAS feedforward gain adaption using the MIT-rule synthesis.

Exercise 1.1 In order to perform the simulations to verify and experiment
with the theory, you will need to build a model of the system. Extract the
.zip file and open the model ex11.mdl, which contains a reference generator,
a set of blocks describing first order process and reference models, as well
as functionality for plotting. It may be beneficial to connect the provided
“goto”-ports to their corresponding signals - this uses the neat signal routing
functionality Simulink for plotting.

1. Implement the feedback control in Figure 1 in the ex11.mdl model.

2. Run the system with γ = 1, k = 1, k0 = 2 to verify the implementation.

3. How does the rate of the adaption change with γ?

4. Does the parameter γ change the value to which θ converges?

The method defining the parameter derivative is called the “MIT-rule”, with

dθ(t)
dt

= −γ e(t)ym(t), (11)

2



but many other methods can be imagined. A common approach is the “Lyapunov-
rule”, a method properly defined and presented in Section (2.2), whereby

dθ(t)
dt

= −γ e(t)uc(t). (12)

5. Change the model so as to use the Lyapunov rule instead of the MIT-rule,
do you see any difference?

Further reading and useful notes The MIT-rule MRAS is derived in
similar fashion here Åström and Wittenmark [2008] (see Example 5.1 Page
187). In addition, some nice and illustrative slides can be found here Frei-
dovich [2010a], presenting a similar derivation to that of the book for the
MIT-rule (available online for free). Note that the Lyapunov rule, which was
only mentioned in brevity, may be done in many ways. However, special
caution must be taken when using the state-space methods (see e.g. Page
212 in Åström and Wittenmark [2008]). Such methods typically invoke the
KYP-lemma, only applying to strictly positive real (SPR) transfer functions
(see Section 3), which is a very restrictive condition that only a handful of
systems meet. A nice check for SPR is found in Lemma 6.1 on page 238
of Khalil [1996].
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2. MRAS for a first order system

Again, let p = d/dt and consider a SISO process, y(t) = G(p)u(t), now with

G(p) = b
p+ a

(13)

for some unknown a, b > 0, and a reference model, ym = Gm(p)uc, with

Gm(p) =
bm

p+ am
, (14)

for some known parameter am, bm > 0 and again consider the problem of
model matching. Clearly, we now need to find two parameters, θ1 and θ2,
to adapt both the gain and the pole location. For this purpose, consider a
feedback law

u(t) = θ1(t)uc(t) − θ2(t)y(t), (15)

yielding a closed loop system

y(t) = bθ1
p+ a+ bθ2

uc(t) (16)

Clearly, if we know the parameters {a, b}, then choosing

θ1(t) =
bm
b

, θ 0
1 , θ2(t) =

am − a
b

, θ 0
2 , (17)

yields y = ym(t), also known as perfect model following. However, in the case
of unknown parameters {a, b}, the adaptive gains θ(t) = [θ1(t), θ2(t)]T need
to be inferred just as in the feed-forward adaption in Section 1.1

2.1 Adaption by the MIT-rule
Just as in Section 1.1, consider an error e(t) = y(t) − ym(t) and define
a positive definite error metic, in this case E(e) = 1

2 e
2, which is to me

minimised with respect to the adaptive gains. Again using the chain rule,

dE(e)
dt

= e
( �e
�θ1

dθ1
dt

+
�e
�θ2

dθ2
dt

)
. (18)

The is very similar to the previous exercise, and choosing α1, α2 > 0,

dθ1
dt

, −α1e
�e
�θ1

, dθ2
dt

, −α2e
�e
�θ2

, (19)

yields a monotonically decreasing error E(e) with time. With (16), the partial
derivatives needed to compute the parameter time-derivatives are

�e
�θ1

=
b

p+ a+ bθ2
uc(t), (20)

�e
�θ2

= −
b2θ1

(p+ a+ bθ2)2
uc(t) = −

b
p+ a+ bθ2

y(t). (21)

However, this presents a crucial problem, as the feedback requires knowledge
of both a and b in order to be realised, which are unknown by the problem
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definition. One way around this issue is to assume that the adaptive gains
are close to their optimal values in (17) at all times. If so,

θ2(t) (
am − a

b
\ a+ bθ2(t) ( am, (22)

implying that

�e
�θ1

(
b

p+ am
uc(t),

�e
�θ2

( −
b

p+ am
y(t). (23)

As b is unknown but positive and constant, we simply define the adaptive
gains as γi , αib/am for any positive constant αi. The complete MRAS is
then given by the feedback law in (15), where the parameters are updated
by (19) using the approximation (23), written

dθ1
dt

= −γ1e(t)
( am
p+ am

uc(t)
)
, dθ2

dt
= γ2e(t)

( am
p+ am

y(t)
)
. (24)

Note especially the difference in sign, and that the approximation may be
crude if starting far away from the true θ 0

i parameters. In addition, it should
be noted that the adaptive gains θi need not converge to their true values if
the input signal to the system is not sufficiently exciting.

Exercise 1.2 Similar to the previous exercise, we need to build a model of
the system in Simulink. Extract and the open the model ex12.mdl, containing
a reference generator, a set of blocks describing first order (SISO) process
and reference models, as well as functionality for plotting.

1. Sketch the feedback on paper and then implement it in the ex12.mdl
model.

2. Run with γ = 1, a = 1, b = 0.5, am = bm = 2 to verify the implementa-
tion.

3. How does the rate of the adaption change with γ?

4. Do the parameters a and b affect the rate of adaption?

5. What happens when you alter the reference model?

6. Examine the parameter plane plot, with θ2 as a function of θ1. To which
values do the parameters converge? Is this expected in theory?

Further reading and notes The MIT-rule MRAS is derived in similar
fashion in the book of Karl-Johan Åström Åström and Wittenmark [2008]
(see Example 5.2 Page 190). In addition, some nice and illustrative slides can
be found here Freidovich [2010b], which presents a similar derivation based
on the same book (available online).
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2.2 Adaption by the Lyapunov-rule
Another method which may be employed is to use conventional Lyapunov
theory. To see this, start by writing the error dynamics using (14) and (16),

de(t)
dt

=
dy(t)
dt

−
dym(t)
dt

(25a)

=py(t) − pym(t) (25b)
=− (a+ bθ2)y+ bθ2uc − (−amym + bmuc) (25c)
=− (a+ bθ2)y+ bθ2uc + amym − bmuc (25d)
=− (a+ bθ2)y+ bθ2uc + amy− amy+ amym − bmuc (25e)
=− ame(t) − (bθ2(t) + a− am)y(t) + (bθ1(t) − bm)uc(t). (25f )

Clearly, the objective is to drive the error to zero, but also to make the adap-
tive gain approach the values corresponding to perfect model following (17).
As such, consider any Lyapunov function V(t) ≥ 0, where V(t) → 0 implies

• e(t) → 0 (model following)

• bθ1(t) − bm → 0 (model matching numerator)

• bθ2(t) + a− am → 0 (model matching denominator)

Choosing a Lyapunov function candidate is not always easy, but given the
reasoning above, a suitable function could be chosen as

V(t) = 1
2

(
e2 +

1
bγ
(bθ2 + a− am)2 +

1
bγ
(bθ1 − bm)2

)
. (26)

with some gain γ > 0. Whereby application of the chain rule yields

V̇(t) =e[−ame(t) − (bθ2(t) + a− am)y(t) + (bθ1(t) − bm)uc(t)]

+ (bθ2 + a− am)2
1
bγ
bdθ1
dt

+ (bθ1 − bm)2
1
bγ
bdθ2
dt

= −ame2 +
1
γ
(bθ2 + a− am)

(dθ2
dt

−γ ye
)
+

1
γ
(bθ1 − bm)

(dθ1
dt

+γuce
)
.

Note that choosing

dθ1
dt

, −γuc(t)e(t),
dθ2
dt

, γ y(t)e(t), (27)

yields a Lyapunov function time-derivative V̇(t) = −ame(t)2 ≤ 0. Indeed, one
may show that V̈(t) is bounded implying that V̇(t) is uniformly continuous,
allowing a proof of global uniform asymptotic convergence of the error e(t) →
0 as t → ∞ by Theorem 4.8 in Khalil [1996], which is quite a bit stronger
than the approximations done in the MIT-rule. However, it should be noted
that much like the MIT-rule, the adaptive gains θi need not converge to their
true values if the input signal to the system is not sufficiently exciting.
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Exercise 1.3 Similarly to the previous exercise, we investigate the system
in Simulink.

1. Sketch the feedback on paper and then implement it in the ex13.mdl
model.

2. Run with γ = 1, a = 1, b = 0.5, am = bm = 2 to verify the implementa-
tion.

3. How does this feedback differ from that of the MIT-rule?

4. Which would you implement in practice? Which guarantees stability?

Further reading and notes The Lyapunov-rule MRAS is derived in sim-
ilar fashion but more extensively in the book of Karl-Johan Åström Åström
and Wittenmark [2008] (see Example 5.7 Page 206). In addition, some nice
and illustrative slides can be found here Freidovich [2010b] which, which
presents a similar derivation (available online).
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3. Notes on SPR transfer functions

The notion of a positive real (PR) transfer function, G(s), is an intuitive but
not too inclusive concept. By definition (see page 238 Khalil [1996]), a PR
system satisfies

1. All poles of G(s) are in ℜ{s} ≤ 0,

2. for all realω ,= 0 for which iω is not a pole of G(s), G(iω)+G(−iω) > 0,

3. any purely imaginary pole iω of G(iω) is simple (of multiplicity 1), and
the residue lims→iω(s− iω)G(s) is positive semidefinite hermitian.

This is clearly a very small subset of the set of stable transfer functions.
Nonetheless, such systems exist, with many examples in circuit theory (see
page 22. Brogliato et al. [2007]). An even smaller set of systems are strictly
positive real (SPR), satisfying

4. G(s+ ε) is positive real (PR) for some ε > 0.

whereby the following relationship holds,

SPR G(s) ⊂ PR G(s) ⊂ Stable G(s).

The conditions for SPR (along with conditions on observability and control-
lability) are necessary for the KYP-lemma to apply in the Lyapunov-rule
synthesis by the state-space method used in (see e.g. Page 212 in Åström and
Wittenmark [2008]). However, it may be possible to find suitable Lyapunov
function candidates even for systems which are not SPR, but then there exist
no standard method of synthesising the Lyapunov function.
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