
Solutions to System Identification exam March 9, 2007.

1.

a. The model can be rewritten as

yk = buk−1 + µ + vk = (uk−1 1 )
(

b

µ

)

+ vk = φ kθ + vk

where vk = ek−µ is white noise with expected value E(vk) = 0 and var(vk) =
σ 2e .

Collect data into matrices

Y = Φθ +V
where

Y =







y2
...

yN






Φ =







u1 1

...
...

uN−1 1







The least-squares estimate is given by

θ̂ = (ΦTΦ)−1ΦTY =
(

∑N−1
k=1 u

2
k

∑N−1
k=1 uk

∑N−1
k=1 uk

∑N−1
k=1 1

)−1(∑N−1
k=1 ukyk+1
∑N−1
k=1 yk+1

)

=
(

51 210.4

210.4 999

)−1(
230.6

1054.9

)

=
(

1.26

0.79

)

The parameter estimates are thus b̂ = 1.26, µ̂ = 0.79.
An unbiased estimate of σ 2e is given by

σ̂ 2e =
2

N − 1V (θ̂)

V (θ̂) = 1
2

N
∑

k=2
ǫ
2
k =
1

2

N
∑

k=2
(yk − φ kθ̂)2 =

1

2

N
∑

k=2
(y2k + b̂u2k−1 + µ̂2 − 2b̂ykuk−1 − 2µ̂yk + 2b̂µ̂uk−1) = 76.7

Thus,

σ̂ 2e =
2

999
76.7 = 0.154

b. For consistency in the least-squares estimation algorithm, it must hold that

limN→∞
1
N−1ΦTV = 0 and that limN→∞ 1

N−1ΦTNΦN is invertible.

lim
N→∞

1

N − 1ΦTV = lim
N→∞

1

N − 1

(

∑N−1
k=1 ukvk+1
∑N−1
k=1 vk+1

)
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Since {vk} is white noise, vk+1 must be uncorrelated with uk for all choices
of {uk}.

lim
N→∞

1

N − 1ΦTNΦN = lim
N→∞

1

N − 1

(

∑N−1
k=1 u

2
k

∑N−1
k=1 uk

∑N−1
k=1 uk

∑N−1
k=1 1

)

This matrix is invertible if its determinant is not zero. This gives the fol-

lowing condition on {uk},

lim
N→∞

1

N − 1

N−1
∑

k=1
u2k ,=

(

lim
N→∞

1

N − 1

N−1
∑

k=1
uk

)2

c. 1.

lim
N→∞

1

N − 1

N−1
∑

k=1
u2k = 25

( lim
N→∞

1

N − 1

N−1
∑

k=1
uk)2 = 25

The estimate is not consistent

2. The signal is periodic with period T = 4, {uk} = {0, 1, 0,−1, 0, . . .}, so
that

lim
N→∞

1

N − 1

N−1
∑

k=1
u2k = 1/2

( lim
N→∞

1

N − 1

N−1
∑

k=1
uk)2 = 0

The estimate is consistent

3. As N → ∞, the effect of the change of uk at k = 10 will vanish,
therefore

lim
N→∞

1

N − 1

N−1
∑

k=1
u2k = 100

( lim
N→∞

1

N − 1

N−1
∑

k=1
uk)2 = 100

The estimate is not consistent

4. The closed-loop system is given by

yk = 0.2byk−2 + µ + ek

Provided that the system is stable (p0.2bp < 1), {yk} will be a stochastic
process, with expected value µy and non-zero variance σ y. We then have
E(uk) = 0.2µy and var(uk) = 0.04σ 2y .

lim
N→∞

1

N − 1

N−1
∑

k=1
u2k = E(u2k) = (E(uk))2 + var(uk) = µ2y + 0.04σ 2y
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( lim
N→∞

1

N − 1

N−1
∑

k=1
uk)2 = 0.04µ2y

Because σ 2y ,= 0, the estimate is consistent.

2. A PRBS reference signal is generally a good choice for closed-loop identifica-

tion of a wide range of processes. A constant signal does not give sufficient

excitation of the process to provide a good model. A gaussian white noise

sequence provides good excitation but there is no limit on the amplitude of

the signal, which may not be desirable for all processes. A sequence of sinu-

soidal signals can give good models at the given frequencies, but if they are

not carefully selected there is a risk of not finding important system char-

acteristics, for example resonances. The experiments may also take much

time using sinusoidal signals.

3.

a. For a balanced realizaion, the observability Gramian Q is diagonal,

Q =
(

q1 0

0 q2

)

and can be computed from the Lyapunov equation

ΦTQΦ − Q + CTC = 0

From the Lyapunov equation, we obtain two equations for computing q1 and

q2

(φ211 − 1)q1 + φ212q2 = −c21
φ11φ12q1 + φ12φ22q2q2 = −c1c2

Solving these equations give

Q =
(

1.37 0

0 0.07

)

Since q1 ≫ q2, a reduced order model can accurately describe the process.
The matrices Φ0, Γ0, C0 and D0 for the reduced order system are given by

Φ0 = φ11 +
φ212
1− φ22

= 0.5939

Γ0 = γ 1 +
φ12γ 2
1− φ22

= −0.9406

C0 = c1 +
c2φ12
1− φ22

= −0.9406

D0 =
c2γ 2
1− φ22

= 0.0442

The reduced-order model is given by

zk+1 = 0.5939zk − 0.9406uk
yk = −0.9406zk + 0.0442uk
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b. We can find a reduced order model by cancelling the pole in z = 0.91 and
the zero in z = 0.9. The reduced-order model is then given by

Hred1(z) =
K

z− 0.5

where K is chosen so that the static gain is preserved,

Hred1(1) =
K

0.5
= H(1) = 2.22

which gives K = 1.11. The reduced-order model from (a) has the transfer
function

Hred2(z) = C0(zI − Φ0)−1Γ0 + D0 =
0.044(z+ 19.4)
z− 0.5939

The two reduced-order models are similar but not identical. An important

difference is that the reduced-order model obtained through balanced real-

ization model reduction has a direct term, even though the original model

has not.

4. The input-output data suggests that the process is nonlinear. The gain from

u to y is much larger for large u than for small u. We therefore cannot expect

to find a single linear system that will provide a good model for the system

over the entire operating range.

5.

a. Given a correct estimate θ , the residuals ǫk = yk−φ kθ = vk have the distri-
bution fv(ǫk). The maximum-likelihood estimate is obtained by maximizing
the likelihood function, which is defined as the joint probability function of

the sequence {ǫk}.

L(θ ) = fv(ǫ) =
N
∏

k=n+1
fv(ǫk) =

N
∏

k=n+1
fv(yk − φ kθ )

Maximizing the likelihood function is equivalent to maximizing the log-

likelihood function

log L(θ ) =
N
∑

k=n+1
log fv(yk − φ kθ ) =

N
∑

k=n+1
log

(

1√
2σ
e−
√
2pyk−φkθ p/σ

)

= −(N − n) log(
√
2σ ) −

√
2

σ

N
∑

k=n+1
pyk − φ kθ p

We can see that

max
θ
log L(θ )

is equivalent to

min
θ

N
∑

k=n+1
pyk − φ kθ p
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b. The maximum-likelihood estimate of σ is found by solving the optimization
problem

max
θ ,σ
log L(θ ,σ )

From the expression for log L(θ ,σ ), we see that we can findσ by maximizing

f (σ ) = log L(θ̂ML,σ ) = −(N − n) log(
√
2σ ) −

√
2

σ V (θ̂ML).
Differentiating f (σ ) yields

d f

dσ
= 1

σ

(√
2

σ
V (θ̂ML) − (N − n)

)

The maximum of f (σ ) is given by d f
dσ = 0, which gives

σ̂ML =
√
2

N − nV (θ̂ML) = 0.86

6. We can expect to obtain a good model at frequencies where the coherence

function γ uy satisfies γ 2uy ( 1, which corresponds to the excitation of the
input being much larger than the excitation of the noise. We can see that

the coherence function is low around the desired closed-loop bandwidth. The

identified model can be improved if we increase the power of the input u at

frequencies up to ω = 100.
Estimating H(eiωh) by dividing the discrete Fourier transforms of u and
y has the great disadvantage that the variance of the estimate does not

decrease as the number of data increases, i.e. the method is not consistent.

To make the method consistent, we can divide the data into a number M of

segments, estimate H(eiωh) for each of these segments, and finally average
the estimates.

7. The Markov parameters Hk are given by

Hk = CAk−1B = yk

where {yk} is the impulse response sequence.
In the Ho-Kalman algorithm, we find a state-space realization through the

singular value decomposition of the matrix

H
(0)
rs =













H1 H2 ⋅ ⋅ ⋅ Hs

H2 H3 ⋅ ⋅ ⋅ Hs+1
...

...
. . .

...

Hr Hr+1 ⋅ ⋅ ⋅ Hr+s−1













We are given the singular value decomposition of H
(0)
33 , where rank(Σ) = 2.

We can then find a second order state-space model for the system. Define
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the matrices

Σ2 = diag{σ 1,σ 2}
U2 = matrix of first 2 columns of U
V2 = matrix of first 2 columns of V
Ey = (1 0 0 )T

Eu = Ey

H
(1)
33 =





H2 H3 H4

H3 H4 H5

H4 H5 H6





The state-space matrices are now given by

A2 = Σ
−1/2
2 UT2 H

(1)
33 V2Σ

−1/2
2 =

(

1.62 0.08

−0.08 −0.62

)

B2 = Σ
1/2
2 V

T
2 Eu =

(−1.07
−0.37

)

C2 = ETy U2Σ
1/2
2 = (−1.07 −0.37 )

D = H0 = y0 = 1

We then have the state space model

xk+1 =
(

1.62 0.08

−0.08 −0.62

)

xk +
(−1.07
−0.37

)

uk

yk = (−1.07 −0.37 ) xk + uk

8.

a. The residual sequence is given by

ǫk = yk + âyk−1 = (â− a)yk−1 + ek + cek−i = ek + cek−i

The autocovariance function is defined as

Cǫǫ(τ ) = E(ǫkǫk+τ ) = E((ek + cek−i)(ek+τ + cek−iτ ))
= E(ekek+τ + cekek−i+τ + cek−iek+τ + c2ek−iek−i+τ )

=







(1+ c2)σ 2e τ = 0
cσ 2e τ = ±i
0 otherwise

b. The number of zero-crossings is given by

τ =
N−1
∑

i=1
xi
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where

xk =
{

1 if ǫkǫk+1 < 0
0 ifǫkǫk+1 > 0

Under H 0, {ǫk} is white noise, and from the course book we know that τ
has the asymptotic distribution

τ ∈N (N
2
,
N

4
)

A confidence interval for τ given H 0 on the level α is given by

[

N

2
− λα /2

√

N

4
,
N

2
+ λα /2

√

N

4

]

For N = 5000, α = 0.01, λα /2 = 2.58, we obtain the confidence interval

[2409, 2591]

Since the observed number of zero-crossings τ = 2642 is not within this
interval, we can reject H 0 on the significance level α = 0.01.
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