
A MANUAL FOR SYSTEM IDENTIFICATION

Lennart Andersson, Ulf Jönsson, Karl Henrik Johansson, and Johan Bengtsson

0. Introduction

The main purpose of this manual is to describe

how to use the Matlab System Identification Toolbox.

The most important toolbox commands are described

briefly and in the order they are normally executed

during a system identification session. See the toolbox

manual and the Matlab built-in help function for

further information about the commands. With a web

browser (for example, Firefox) it is possible to read
the manual at

http://www.mathworks.com/access/helpdesk/

help/toolbox/ident/

Figure 1 shows an algorithm for modeling and system

identification. The presentation in this manual follows

this algorithm. System identification is an iterative

process and it is often necessary to go back and

repeat earlier steps. This is illustrated with arrows

in the figure. Notice that the order of the blocks in

the algorithm does not only describe the chronological

order the tasks are performed, but also how they

influence each other. For example, a certain model

structure can be proposed by the physical model,

the amount of data limits the model complexity etc.

Support for control design is often the purpose for

system identification in this course, as illustrated by

the last block in Figure 1.

1. Purpose

It is important to state the purpose of the model as a

first step in the system identification procedure. There

are a huge variety of model applications, for example,

the model could be used for control, prediction, signal

processing, error detection or simulation. The purpose

of the model affects the choice of identification meth-

ods and the experimental conditions, and it should

therefore be clearly stated. It is, for example, impor-

tant to have an accurate model around the desired

crossover frequency, if the model is used for control

design.

2. Physical Modeling

It is sometimes possible to derive a model directly

from physical laws. This model will most often, how-

Purpose

Physical

Modeling

Experiments

Data

Examination

Model Structure

Selection

Model

Estimation

Validation

Control

Design

Figure 1 Algorithm for modeling and system identifica-

tion.

ever, contain unknown parameters to be estimated. If

some parameters are known and some are unknown,

it is sometimes (but not always) possible to perform
an estimation using the values of the known parame-

ters. We commonly use only the structure of the model

derived from the physical model. This structure can be

1



in terms of model order, known pole locations (an inte-
grator or dominating resonance), static nonlinearities
etc. If there are no knowledge about the considered

system, we use the term black-box identification. It is

called grey-box identification, if some part of the sys-

tem is known.

3. Experiments

The experiments are done in two steps. In the first

step, preliminary experiments such as impulse and

step responses are performed to gain primary knowl-

edge about important system characteristics such as

stationary gain, time delay and dominating time con-

stants. It should be possible to draw conclusions from

these experiments on whether or not the system is lin-

ear and time invariant and if there are disturbances

acting on the system. The information obtained from

the preliminary experiments are then used to deter-

mine suitable experimental conditions for the main

experiments, which will give the data to be used in

the System Identification Toolbox.

3.1 Preliminary experiments

Some system characteristics simple preliminary ex-

periments are discussed in this subsection.

Time-invariance Most identification methods as-

sume time-invariant models. Measurements or exper-

iments at different times indicate if the system is time

invariant or not. A system may appear to be time vary-

ing even when this is not the case. The reason is that

slow dynamics may appear as a time variation when

considered on a short time scale. If the purpose is to

identify fast dynamics, then the slow dynamics can be

removed by trend elimination. Time variations, which

do not depend on slow dynamics may be identified by

use of recursive algorithms.

Linearity The System Identification Toolbox con-

tains routines only for identifying linear systems. Lin-

earity can be checked by

• investigating system responses for various input

signal amplitudes,

• examining if the responses to a square wave are

symmetric, and

• deriving the coherence spectrum.

Most real systems are nonlinear. A linearized model

can then be obtained from data if the input signal

has a small amplitude. Sometimes it is possible by

a proper choice of state-transformation to rewrite

a nonlinear system into a linear, see Chapter 5 in

Johansson (1993).

A common nonlinearity is friction. The influence of

friction can be reduced or eliminated by performing

the identification experiment with a bias on the in-

put. For example, a DC motor model should be identi-

fied using a bias such that the motor runs in only one

direction during the experiment. Furthermore, large

input signals (contrary to the linearization prerequi-
site above) can reduce the problems with friction.

Transient response analysis Step- and impulse-

response analysis give information on dominating

time constant, time delay, and stationary gain. It

is also possible to recognize non-minimum phase

properties of the system from these experiments. An

indication of the disturbances acting on the system

may also be obtained.

Frequency response analysis Frequency response

analysis according to the correlation method in Chap-

ter 2 of Johansson (1993) gives an estimated transfer
function for the system. The obtained Bode plot gives

information on location of poles and zeros, stationary

gain, and time delay.

3.2 Main experiments

This subsection treats the main experiments where

data are collected to be used in the System Identifica-

tion Toolbox. In particular, the choice of input signal

is discussed.

The identification gives an accurate model at the fre-

quencies where the input signal contains much energy.

We say that the input signal has good excitation at

these frequencies. The frequency content of the input

should therefore be concentrated to frequencies where

small estimation errors are desired. A pseudo-random

binary sequence (PRBS) is a common choice of input
signal, since it has a large energy content in a large

frequency range. In the course projects, we use the

program logger for generation of PRBS, see Gustafs-

son (1989). The PRBS signal in logger is defined in

terms of

• sampling interval (h),

• number of sampling intervals between PRBS

shift register updates (M),

• number of data points collected (N), and

• amplitude of the excitation signal (A).

A rule of thumb is to let 1/(h ⋅ M) be equal to the
bandwidth of the system. To avoid aliasing, M should

be at least 2–10. The closed loop system step response

should be sampled 5-10 times during it’s rise time.

The experiment duration should be chosen to get good

parameter estimates. A rule of thumb is to make it

2



5-10 times longer than the longest interesting time

constant.

The data can be divided into three parts

• data with transients

• identification data

• validation data

The amplitude should be chosen as large as possible

in order to achieve a good signal-to-noise ratio and

to overcome problems with friction. However, the

amplitude may not be chosen larger than the range

in which the linearity assumption holds. (See the
section on preliminary experiments above.) Typically
saturations give an upper bound on the amplitude of

the input signal. The mean value is in many cases

non-zero in order to reduce friction problems or to

give a linearized model around a stationary point with

u0 ,= 0.

4. Data Examination

Assume that an experiment has been performed and

that we have an input sequence and an output se-

quence represented as column vectors u and y, respec-

tively, in Matlab. It is suitable to split the data into

two sets, one for identification and one for validation:

>> zi=iddata(y(1:N1),u(1:N1),h);

>> zv=iddata(y(N1+1:N),u(N1+1:N),h);

Start by checking the data manually via plots. Look

for

• outliers,

• aliasing effects, and

• trends and non-stationarity.

Outliers should simply be removed from the data

series.

If there are aliasing effects in the data, the experiment

set-up has to be changed: either the sampling rate

should be increased or an appropriate anti-aliasing

filter should be used.

Linear trends in data should be removed. This is done

by using the command detrend. A non-zero mean

value is removed by the Matlab command

>> zi=detrend(zi,’constant’);

and a linear trend are removed by the command

>> zi=detrend(zi);

The trends should, of course, also be removed from

validation data zv.

plot Display input–output data

detrend Remove trends from data

4.1 Excitation

The input should provide good excitation in the fre-

quency range where the model need to be accurate.

We can check if the input excites the system appropri-

ately by studying

• the autospectrum of u and y,

• the coherence spectrum, and

• the conditions for persistent excitation.

It is possible to concentrate the identification to

interesting frequency ranges by filtering u and y as

explained below. If the excitation is insufficient after

filtering then the experiments must be repeated with

new experimental conditions. The Matlab function

spectrum can be used to plot the autospectrum and

the coherence function as follows

>> yi=zi.OutputData; ui=zi.InputData;

>> spectrum(ui,yi)

With an output argument

>> S=spectrum(ui,yi);

the following quantities are derived:

S=[Suu Syy Suy Tyu Gamuy Suuc Syc Suyc]

Suu=u-vector power spectral density

Syy=y-vector power spectral density

Suy=Cross spectral density

Tuy=Complex transfer function Suy./Suu

Gamuy=Coherence function

(abs(Suy).^2)./(Suu.*Syy)

Suuc,Syyc,Suyc=Confidence ranges

Some of these can also be derived separately, as shown

in the box below.

psd Power spectral density

csd Cross spectral density

cohere Coherence function estimate

tfe Transfer function estimate

spectrum psd, csd, cohere, tfe combined

3



Hu

Hn

H f H f

u f yf

u

n

y

Figure 2 Filtering of data affects the noise model

4.2 Filtering

It is often a good idea to filter the input signals with

a lowpass or bandpass filter. Filtering concentrates

the identification to the frequency range of interest

and reduces the effect of high-frequency measurement

noise. A Butterworth filter can be applied via the

command idfilt:

>> zif=idfilt(zi,N,Wn);

where

N=Order of Butterworth filter

Wn=Cut-off frequencies in fractions

of the Nyquist frequency.

Wn scalar gives lowpass filter

Wn=[Wl Wh] gives bandpass filter

It is also possible to use the commands filter and

filtfilt from the Signal Processing Toolbox. The

latter assures zero phase distortion.

It is important to note that filtering affects the noise

model. Consider the setup in Figure 2. If we use the

filtered data u f and yf to obtain a noise model Ĥn,

then we actually obtain the estimate Ĥ fHn.

idfilt Butterworth filter

filter Arbitrary filter

filtfilt Undistorted-phase filter

5. Model Structure Selection

We discuss model structure selection for parametric

models in this section. The model structure deter-

mines the set in which the model estimation is per-

formed. For example, a very simple such model set is

the set of static gains K mapping the input to the out-

put, that is, the input–output model y(t) = Ku(t). The
complexity of the model structure, of course, affects

the accuracy with which the model can approximate

the real process. Few dynamical systems can be well

approximated by the model y(t) = Ku(t).

Model estimation is treated in next section. Then, both

parametric and nonparametric models are considered.

The most general parametric model structure used in

the System Identification Toolbox is given by

A(q)y(t) =
B(q)

F(q)
u(t − nk) +

C(q)

D(q)
e(t) (1)

where y and u is the output and input sequences,

respectively, and e is a white noise sequence with zero

mean value. The polynomials A, B,C, D, F are defined

in terms of the backward shift operator1:

A(q) = 1+ a1q
−1 + . . .+ anaq

−na

B(q) = b1 + b2q
−1 + . . .+ bnbq

−nb+1

C(q) = 1+ c1q
−1 + . . .+ cncq

−nc

D(q) = 1+ d1q
−1 + . . .+ dndq

−nd

F(q) = 1+ f1q
−1 + . . .+ fn f q

−n f

Rarely, we use the general structure (1) but some
special forms, where one or more polynomial are set

to identity:

• AR model

A(q)y(t) = e(t) (2)

which is a time-series model with no exogenous

input (no input u).

• ARX model

A(q)y(t) = B(q)u(t − nk) + e(t) (3)

• ARMAX model

A(q)y(t) = B(q)u(t − nk) + C(q)e(t) (4)

• Output-error (OE) model

y(t) =
B(q)

F(q)
u(t − nk) + e(t) (5)

• Box-Jenkins (BJ) model

y(t) =
B(q)

F(q)
u(t− nk) +

C(q)

D(q)
e(t) (6)

The choice of model structure depends on the noise

sequence: how well is it possible to estimate the noise?

It is not at all necessary that a model with more

parameters or more freedom (more polynomials) is
better. Finding the best model is a matter of choosing

a suitable structure in combination with the number

of parameters.

1Notice that this parametrization is not the same we are used to

from the course Computer-Controlled Systems.

4



Manipulation of models

idgrey Fix parameters (grey-box

identification)

model.Ts=h Set sampling interval to h

Information extraction

present Presentation of the model

ssdata convert model to state space

6. Model Estimation

System identification is the procedure of deriving a

model from data and model estimation is the proce-

dure of fitting a model with a specific model struc-

ture. We have linear models and parametric models

of a specific structure—e.g., physical models, ARMAX

models. In addition to parametric linear models, a lin-

ear model may consist of a weighting function or a

transfer function in the form of a frequency response.

Using the Matlab System Identification Toolbox., we

study how transfer function models can be estimated

from data. Also when system identification aims to-

wards a specific parametric model, it makes sense to

estimate an input-output relationship in the form of

a transfer function. Note that a transfer function es-

timate may also give hints to model complexity and

model structure.

6.1 Estimation of Linear Models

Amajor advantage of linear model estimation methods

such as spectrum analysis and covariance analysis is

that they require no prior specification of the model

structure in terms of model structure, model order etc.

Correlation analysis There are two commands

for correlation analysis: cra and covf. The covariance

function Cyu is estimated as

Ĉyu(τ ) =
1

N

N∑

k=1

y(k+ τ )u(k) (7)

and Cuu and Cyy similarly. An estimate of the impulse

response can then be derived using the relationship

Ĉyu(k) =
∞∑

l=0

h(l)Ĉuu(k− l)

If u is assumed to be a white noise sequence, this

expression is simplified and gives

ĥ(k) =
1

σ
2
u

Ĉyu(k) (8)

If u is not a white noise sequence, it is possible to

use a whitening filter Hw such that u f = Hwu is

approximately white. The command cra uses filtered

signals u f and yf to estimate the impulse response as

in (8):

>> ir=cra(zi)

The step response can be computed and plotted as

>> sr=cumsum(ir)

>> plot(sr)

cra Impulse response from correlation analysis

covf Covariance function estimate

6.2 Spectral analysis from the covariance

function

Filtered discrete Fourier transformations (DFT) of the
covariance functions Ĉuu, Ĉyy, Ĉyu give the spectral

estimates Ŝuu, Ŝyy, Ŝyu. We have, for example,

Ŝyu(iω ) =
M∑

τ=−M

Ĉyu(τ )WM (τ )e
−iωτ

where WM is a window function. The accuracy of the

estimates depend on the used window function.

The function spa estimates the transfer function and

the noise spectrum Snn according to the following

formulas

Ĥ(eiω ) =
Ŝyu(iω )

Ŝuu(iω )

Ŝnn(iω ) = Ŝyy(iω ) −
pŜyu(iω )p

2

Ŝuu(iω )

A typical Matlab sequence could be

>> [H,Snn]=spa(zi,M,w);

>> bode(H)

>> bode(Snn)

spa Spectral analysis

6.3 Spectral analysis from the DFT

The command etfe estimates the transfer function as

the ratio of the DFT of the input and the output:

Ĥ(eiω k) =
Ŷ(eiω k)

Û(eiω k)

In Matlab, we write

>> H=etfe(zi);

>> bode(H)

5



As in spa, a window is used when deriving H. The

estimate will vary with the choice of window, and it is

far from trivial to choose a proper window.

The commands tfe and spectrum in the Signal Pro-

cessing Toolbox estimates the transfer function by

using the so called Welch’s averaged periodogram

method. The quality of the estimates depends on the

choice of a number of parameters defining windows,

averaging and zero padding. An estimate is derived as

>> H=tfe(ui,yi);

etfe DFT transfer function estimate

tfe Welch’s transfer function estimate

spectrum Various power spectra using

Welch’s method

fft Discrete Fourier transform

6.4 Parametric models

Assume that one of the model structures in the section

Model Structure Selection is adopted. The next step

is then to choose an appropriate model order and to

estimate the parameters of the polynomials. Methods

for doing this is presented in this subsection.

All Matlab functions for parameter estimation have

the structure

>> model=functionname(zi,orders)

where model contains the resulting estimated model,

functionname is any of the command names listed

below, and orders defines the model order. As an

example, we show the use of the command pem, which

estimates the parameters of the general parametric

model structure (1):

>> na=1; nb=1; nc=1; nd=1; nf=1; nk=1;

>> orders=[na nb nc nd nf nk];

>> pem1=pem(zi,orders)

The information can be presented by the command

present:

>> present(pem1);

For an ARX model, there are two methods for parame-

ter estimation: (1) the least squares (LS) method and
(2) the instrumental (IV) variable method. The pa-
rameters of the other model structures are estimated

by use of a prediction error method.

pem Estimate general model

ar Estimate AR model

ivar IV estimate of AR model

iv4 IV estimate of AR model

arx LS estimate of ARX model

ivx IV estimate of ARX model

armax Estimate ARMAX model

oe Estimate output-error model

bj Estimate Box-Jenkins model

present Presentation of estimated model

6.5 Model reduction

Model reduction is an alternative to standard model

estimation. The idea is to first estimate the parame-

ters of a high order ARX model and then reduce the

model order using suitable methods. By estimating a

high order model we capture most of the information

in the data. The model reduction step then extracts

the most significant states of this model.

One way to reduce the order of a linear system H(q) =
B(q)/A(q) is to transform it into a balanced state-
space realization. The Gramian matrix corresponding

to the balanced state-space realization indicates the

states of importance. The next step is to reduce the

order of the balanced realization by eliminating the

insignificant states. Here is a typical sequence of

commands:

>> arx1=arx(zi,[10 9 1]);

>> [A,B,C,D]=ssdata(arx1);

>> [Ab,Bb,Cb,M,T]=dbalreal(A,B,C);

This gives

M=[21 12 12 0.03 0.03 0.02 0.02 0 0 0]

so the last seven states can be eliminated. This is done

as

>> [Ab,Bb,Cb,Db]=dmodred(Ab,Bb,Cb,D,4:10);

>> [b,a]=ss2tf(Ab,Bb,Cb,Db);

>> arx1red=idpoly(a,b);

ssdata Conversion to state-space

tfdata Conversion to transfer function

dbalreal Discrete balanced realization

balreal Continuous balanced realization

dmodred Discrete model order reduction

modred Continuous model order reduction

ss2tf State-space to transfer function

conversion

idpoly Polynomial to transfer function

conversion

6



7. Validation

The parametric models obtained in previous section

can be validated in a variety of ways. Here, we discuss

model validity criterion, pole–zero and Bode plots,

residual analysis, and simulation and cross validation.

In a standard identification session all of these are

used to affirm an accurate model.

7.1 Model validity criterion

It is possible to get an indication of a suitable model

order by studying how various criteria depend on the

model order. Two such criteria are the loss function

and Akaike’s Final Prediction Error (FPE). These two
criteria is given by the command present. A more

sophisticated way of using model validity criteria

are obtained through arxstruc and ivstruc together

with selstruc. These commands can be used for

determination of suitable model order for an ARX

structure. An example:

>> NN=[2 1 1;3 1 1;3 2 1;4 3 1;5 4 1];

>> V=arxstruc(zi,zv,NN);

>> selstruc(V);

Each row of the matrix NN contains the order of an

ARX model. The arxstruc command estimates the

parameters and computes the corresponding losses

for the ARX models defined by NN based on the

identification data in zi and the validation data in zv.

The selstruc command plots the loss as a function of

the number of parameters in the model in a diagram.

It is possible to invoke the selstruc command with an

extra argument ’AIC’ or ’MDL’, in which case the best

model is selected according to Akaike’s Information

Theoretic Criterion (AIC) or Rissanen’s Minimum
Description Length Criterion (MDL). For example,

>> selstruc(V,’AIC’);

The command ivstruc is used in the same way as the

arxstruc command.

arxstruc Loss functions for families of

ARX models

ivstruc Output-error fit for families of

ARX models

selstruc Select model structures according

to various criteria

struc Generate typical structure matrices

for arxstruc and ivstruc

7.2 Pole–zero plots

A rough idea of pole–zero locations are obtained from

the simple experiments discussed in Section 3 and

from the nonparametric models. It should be verified

that the estimated model has similar pole–zero loca-

tions. Moreover, if the noise appeared to have domi-

nating frequencies, there should be resonant poles in

the noise model with corresponding frequencies.

A pole–zero plot may indicate if the model order is too

large. Then there will be poles and zeros located close

together, suggesting that model reduction is possible.

>> pzmap(pem1);

zpkdata Zeros, poles, static gains

and their standard deviations

pzmap Plot of zeros and poles

7.3 Bode diagram

The Bode plot of the estimated polynomial model

should be consistent with the frequency analysis

in Section 3 and the Bode plots obtained by the

nonparametric methods in Section 6. Stationary gain

and location of dominating poles and zeros can be

checked in the Bode plot. The Nyquist plot of the

estimated model can be used in the same way. The

noise-spectrum is also obtained, if a second output

arguments is added to th2ff.

>> H=idfrd(pem1(’m’));

>> bode(H);

>> Snn=idfrd(pem1(’n’));

>> bode(Snn);

idfrd Frequency function for the model

7.4 Residual analysis

The parametric models described in Section 5 are of

the form

y(t) = Hu(q)u(t) + He(q)e(t)

where Hu(q) and He(q) are rational transfer func-
tions. The residuals are computed from input–output

data as

ε (t) = H−1e (q)
(
y(t) − Hu(q)u(t)

)

If the residuals are computed based on the identified

model and the data used for the identification, then

ideally the residuals should be white and independent

of the input signals. If this is not the case, then, for

example, the model order, the model structure, or the

length of the data sequence are inappropriate.

7



The residuals can be tested in several ways, for

example, through

• autocorrelation for the residuals,

• crosscorrelation between the residuals and the

input, and

• distribution of residual zero crossings (see Jo-
hansson (1993)).

The first two quantities are plotted as

>> resid(pem1,zi);

Then, the zero crossing test can be checked by plotting

the residuals:

>> e=resid(pem1,zi);

>> plot(e);

The residual analysis should be performed based on

both the data sets zi and zv. The residual sequence

computed from the validation data zv should ideally

be white.

The residual tests should be used with caution. There

are model structures, such as the output-error struc-

ture and identification methods like the IV methods,

which focus on the input–output part Hu. Then, it is

not realistic to expect that the residuals have white

noise properties.

Note also that residual analysis is not relevant in

connection with the identification method based on

model reduction.

resid Computes and tests the residuals

associated with a model

7.5 Simulation and cross validation

Simulation and cross validation are methods for test-

ing whether a model can reproduce the observed out-

put when driven by the actual input. The identified

model can be tested with the input–output data zi in

a simulation:

>> ui=zi.InputData;

>> yi=zi.OutputData;

>> ys=idsim(ui,pem1);

>> plot([yi ys]);

A much more interesting and revealing test is the

cross validation, where the validation data zv is

used for simulation. This test gives a good indication

whether the identified model captures the dominating

dynamics of the true system or not.

>> uv=zv.InputData;

>> yv=zv.OutputData;

>> ys=idsim(uv,pem1);

>> plot([yv ys]);

It may be possible to achieve better correspondence

between the simulated and the measured output in

the cross validation test by using the residuals in

the simulation. The reason is that then not only the

dynamic part of the model but also the noise model is

taken into consideration in the simulation.

>> zv=iddata(yv,uv,h);

>> ev=resid(pem1,zv);

>> yc=idsim([uv ev.OutputData],pem1);

>> plot([yv yc]);

Cross validation is probably the most important of

the validation tests, since by definition we want our

obtained model to mirror the true plant in exactly this

sense.

compare Compare simulated predicted or

output with the measured output

idsim Simulate a given system

pe Prediction errors

predict M-step ahead prediction

resid Compute and test the residuals

associated with a model

8. References

Gustafsson, K. (1989): “logger—a program for data

logging.” Technical Report ISRN LUTFD2/TFRT--
7509--SE. Department of Automatic Control, Lund

Institute of Technology.

Johansson, R. (1993): System Modeling and Identifi-
cation. Prentice-Hall, Englewood Cliffs, New Jer-

sey.

8


