
Cheat Sheet – FRTN50

Convex sets

• C ⊆ Rn is convex if for all x, y ∈ C and θ ∈ [0, 1]: θx+ (1− θ)y ∈ C.

• Let f : Rn → R ∪ {∞} be a convex function, then C = {x ∈ Rn : f(x) ≤ 0} is a convex set.

Convex functions

• f : Rn → R ∪ {∞} is convex if for all x, y ∈ Rn and θ ∈ [0, 1]: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

• Differentiable f : Rn → R is convex if for all x, y ∈ Rn: f(y) ≥ f(x) +∇f(x)T (y − x)

• f = h ◦ g : Rn → R ∪ {∞} is convex for g : Rn → R and h : R→ R ∪ {∞} if one of the following holds:

– h is convex and nondecreasing and g is convex

– h is convex and nonincreasing and g is concave

– h is convex and g is affine

Subgradients

• Subgradient to f : Rn → R ∪ {∞} at x is any vector s ∈ Rn such that for all y ∈ Rn: f(y) ≥ f(x) + sT (y − x)

• Set of subgradients at x, denoted by ∂f(x), is called subdifferential at x and operator ∂f called subdifferential

• Fermat’s rule: x ∈ Rn minimizes f : Rn → R ∪ {∞} if and only if 0 ∈ ∂f(x)

• f, g : Rn → R ∪ {∞} are closed convex and constraint qualification holds: ∂(f + g) = ∂f + ∂g

• g : Rm → R ∪ {∞} is closed convex, L ∈ Rm×n, and constraint qualification holds: ∂(g ◦ L)(x) = LT ∂g(Lx)

Conjugate functions

• Let f : Rn → R ∪ {∞}, then conjugate f∗ : Rn → R ∪ {∞} is defined as f∗(s) = supx(sTx− f(x))

• Fenchel-Young’s inequality: f(x) + f∗(s) ≥ sTx for all x, s ∈ Rn

• Equivalence due to Fenchel Young: f(x) + f∗(s) = sTx if and only if s ∈ ∂f(x)

• Suppose f : Rn → R ∪ {∞} is closed convex, then f∗∗ = f

Duality

• Assumptions: f : Rn → Rn ∪ {∞}, g : Rm → R ∪ {∞} closed convex, L ∈ Rm×n, constraint qualification holds

• Given assumptions: x solves minimizex(f(Lx) + g(x)) if and only if 0 ∈ LT ∂f(Lx) + ∂g(x)

• Let µ ∈ ∂f(Lx) to arrive at dual problem: minimizeµ(f∗(µ) + g∗(−LTµ))

Strong convexity and smoothness

• f : Rn → R ∪ {∞} is σ-strongly convex with σ > 0 if f − σ
2
‖ · ‖22 is convex

• σ-strongly convex f : Rn → R∪{∞} satisfies for all s ∈ ∂f(x) and y ∈ Rn: f(y) ≥ f(x)+sT (y−x)+ σ
2
‖x−y‖22

• Differentiable f : Rn → R is β-smooth with β ≥ 0 if ∇f is β-Lipschitz continuous

• β-smooth f : Rn → R satisfies descent lemma, for all x, y: f(y) ≤ f(x) +∇f(x)T (y − x) + β
2
‖x− y‖22

• f : Rn → R ∪ {∞} is σ-strongly convex if and only if f∗ is σ−1-smooth and convex

Proximal gradient method

• Proximal operator of g : Rn → R ∪ {∞} is proxγg(z) = argminx(g(x) + 1
2γ
‖x− z‖22)

• Proximal gradient iteration: xk+1 = proxγkg(xk − γk∇f(xk))
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