Convex Functions

Pontus Giselsson

Learning goals

- Know convex function definition
- Understand extended-valued functions and domain
- Know about epigraphs and connection between convex hull and convex envelope
- Able to decide if function is convex from
 - First and second order conditions
 - Convexity preserving operations
- Understand strict convexity, strong convexity, and smoothness

Convex Functions

Extended-valued functions and domain

- We consider extended-valued functions $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$
- Example: Indicator function of interval [a, b]

$$\iota_{[a,b]}(x) = \begin{cases} 0 & \text{if } a \le x \le b \\ \infty & \text{else} \end{cases}$$

. 1

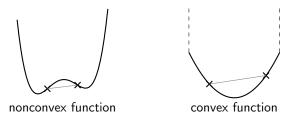
• The (effective) domain of $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is the set

dom
$$f = \{x \in \mathbb{R}^n : f(x) < \infty\}$$

• (Will always assume $\operatorname{dom} f \neq \emptyset$, this is called proper)

Convex functions

• Graph below line connecting any two pairs (x, f(x)) and (y, f(y))



• Function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is *convex* if for all $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$:

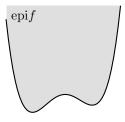
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended valued arithmetics)

• A function f is concave if -f is convex

Graphs and epigraphs

• The epigraph of a function f is the set of points above graph



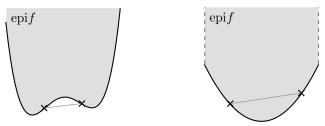
• Mathematical definition:

$$epif = \{(x,r) \mid f(x) \le r\}$$

• The epigraph is a set in $\mathbb{R}^n \times \mathbb{R}$

Epigraphs and convexity

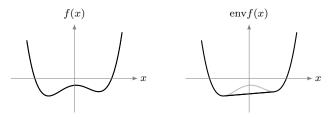
- Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$
- Then f is convex if and only $\operatorname{epi} f$ is a convex set in $\mathbb{R}^n \times \mathbb{R}$



• f is called closed (lower semi-continuous) if epif is closed set

Convex envelope

• Convex envelope of f is largest convex minorizer

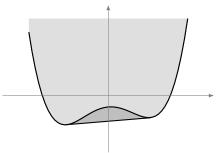


• Definition: The convex envelope envf satisfies: envf convex,

 $\operatorname{env} f \leq f$ and $\operatorname{env} f \geq g$ for all convex $g \leq f$

Convex envelope and convex hull

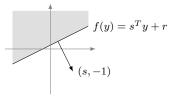
• Epigraph of convex envelope of f is convex hull of epif



- ${\rm epi}f$ in light gray, ${\rm epi}\,{\rm env}f$ includes dark gray

Affine functions

• Affine functions $f:\mathbb{R}^n\to\mathbb{R}$ cut $\mathbb{R}^n\times\mathbb{R}$ in two halves



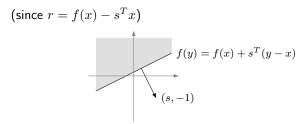
- s defines slope of function
- Upper halfspace is epigraph with normal vector (s, -1):

$$epif = \{(y,t) : t \ge s^T y + r\} = \{(y,t) : -r \ge (s,-1)^T (y,t)\}$$

Affine functions – Reformulation

• Pick any fixed $x \in \mathbb{R}^n;$ affine $f(y) = s^T y + r$ can be written as

$$f(y) = f(x) + s^T(y - x)$$

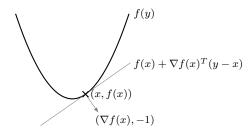


• We see affine function of this form important for convexity

First-order condition for convexity

• A differentiable function $f~:~\mathbb{R}^n\to\mathbb{R}$ is convex if and only if $f(y)\geq f(x)+\nabla f(x)^T(y-x)$

for all $x, y \in \mathbb{R}^n$



- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - coincides with function f at x
 - is supporting hyperplane to epigraph of f
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

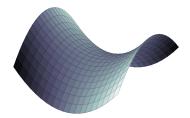
Second-order condition for convexity

• A twice differentiable function is convex if and only if

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive semi-definite)

- "The function has non-negative curvature"
- Nonconvex example: $f(x) = x^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x$ with $\nabla^2 f(x) \not\geq 0$



Conclude convexity

For simple functions like

• indicator function

$$\iota_S(x) = \begin{cases} 0 & \text{if } x \in S \\ \infty & \text{else} \end{cases}$$

convex function if and only if ${\boldsymbol{S}}$ convex set

- norms: ||x||
- (shortest) distance to convex set: dist_S(x) = inf_{$y \in S$}(||y x||)
- affine functions: $f(x) = s^T x + r$
- quadratics: $f(x) = \frac{1}{2}x^TQx$ with Q positive semi-definite matrix
- matrix fractional function: $f(x, Y) = x^T Y^{-1} x$

convexity concluded from definition or 1st or 2nd order conditions

Example – Convexity of norms

Show that $f(x) := \|x\|$ is convex

• Norms satisfy the triangle inequality

 $||u + v|| \le ||u|| + ||v||$

• Let $z = \theta x + (1 - \theta)y$ for arbitrary x, y and $\theta \in [0, 1]$:

$$\begin{split} f(z) &= \|\theta x + (1 - \theta)y\| \\ &\leq \|\theta x\| + \|(1 - \theta)y\| \\ &= \theta\|x\| + (1 - \theta)\|y\| \\ &= \theta f(x) + (1 - \theta)f(y) \end{split}$$

)

which is definition of convexity

• Proof uses triangle inequality and $\theta \in [0, 1]$

Operations that preserve convexity

For more complicated functions, use convexity preserving operations:

- Positive sum
- Composition with matrix
- Image of function under affine mapping
- Supremum of convex functions
- A composition rule

Positive sum

- Assume that f_j are convex for $j = \{1, \ldots, m\}$
- Assume that there exists x such that $f_j(x) < \infty$ for all j
- Then positive sum

$$f = \sum_{j=1}^{m} t_j f_j$$

with $t_j > 0$ is convex

Composition with matrix

• Let f be convex and \boldsymbol{L} be a matrix, then

$$(f \circ L)(x) := f(L(x))$$

is convex

Image of function under linear mapping

• The image function Lf : $\mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is defined as

$$(Lf)(x) := \inf_{y} \{ f(y) : Ly = x \}$$

where $L : \mathbb{R}^m \to \mathbb{R}^n$ is a matrix and $f : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$

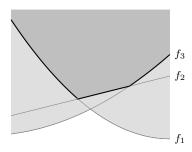
• Convex if f convex and bounded below for all x on inverse image

Supremum of convex functions

• Point-wise supremum of convex functions from family $\{f_i\}_{i \in J}$:

$$f(x) := \sup_{j} \{ f_j(x) : j \in J \}$$

- Supremum is over functions in family for fixed x
- Example:



• Convex since intersection of convex epigraphs

Composition rule

• Consider the function $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ defined as

 $f(\boldsymbol{x}) = h(g(\boldsymbol{x}))$

where $h:\mathbb{R}\to\mathbb{R}\cup\{\infty\}$ is convex and $g:\mathbb{R}^n\to\mathbb{R}$

- Suppose that one of the following holds:
 - h is nondecreasing and g is convex
 - h is nonincreasing and g is concave
 - g is affine

Then f is convex

Vector composition rule

• Consider the function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f(x) = h(g_1(x), g_2(x), \dots, g_k(x))$$

where $h : \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$ is convex and $g_i : \mathbb{R}^n \to \mathbb{R}$

- Suppose that for each $i \in \{1, \ldots, k\}$ one of the following holds:
 - h is nondecreasing in the *i*th argument and g_i is convex
 - h is nonincreasing in the *i*th argument and g_i is concave
 - g_i is affine

Then f is convex

Convexity: Example 1

Show that: $f(x) := e^{\|Lx-b\|_2^4}$ is convex where L is matrix b vector:

Let

$$g_1(u_1) = \|u_1\|_2, \quad g_2(u_2) = \begin{cases} 0 & \text{if } u_2 \le 0\\ u_2^4 & \text{if } u_2 \ge 0 \end{cases}, \quad g_3(u_3) = e^{u_3}$$

then $f(x) = g_3(g_2(g_1(Lx - b)))$

- $g_1(Lx-b)$ convex: convex g_1 and Lx-b affine
- $g_2(g_1(Lx-b))$ convex: cvx nondecreasing g_2 and cvx $g_1(Lx-b)$
- f(x) convex: convex nondecreasing g_3 and convex $g_2(g_1(Lx-b))$

Convexity: Example 2

Show that the conjugate $f^*(s):=\sup_{x\in \mathbb{R}^n}(s^Tx-f(x))$ is convex:

- Define (uncountable) index set J and x_j such that $\cup_{j\in J} x_j = \mathbb{R}^n$
- Define $r_j := f(x_j)$ and affine (in s): $a_j(s) := s^T x_j r_j$
- Therefore $f^*(s) = \sup_j (a_j(s) : j \in J)$
- Convex since supremum over family of convex (affine) functions
- Note convexity of f^* not dependent on convexity of f

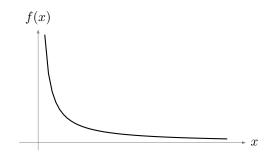
Strict convexity

• A function is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x \neq y$ and $\theta \in (0,1)$

- Convexity definition with strict inequality
- No flat (affine) regions
- Example: f(x) = 1/x for x > 0



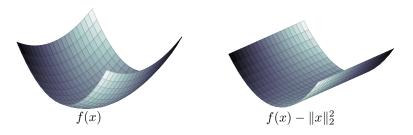
Strong convexity

- Let $\sigma > 0$
- A function f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- Alternative equivalent definition of σ -strong convexity:

 $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) - \frac{\sigma}{2}\theta(1-\theta)||x-y||^2$

holds for every $x,y\in \mathbb{R}^n$ and $\theta\in [0,1]$

- Strongly convex functions are strictly convex and convex
- Example: f 2-strongly convex since $f \| \cdot \|_2^2$ convex:



Uniqueness of minimizers

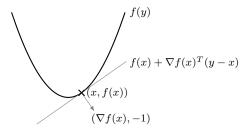
- Strictly (strongly) convex functions have unique minimizers
- Strictly convex functions may not have a minimizing point
- Strongly convex functions always have a unique minimizing point

First-order condition for strict convexity

- Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^T (y - x)$$

for all $x,y\in \mathbb{R}^n$ where $x\neq y$



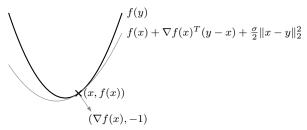
- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - coincides with function f only at x
 - is supporting hyperplane to epigraph of \boldsymbol{f}
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

First-order condition for strong convexity

- Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is σ -strongly convex with $\sigma > 0$ if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

for all $x, y \in \mathbb{R}^n$



- Function f has for all $x \in \mathbb{R}^n$ a quadratic minorizer that:
 - curvature defined by σ
 - coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

Second-order condition for strict/strong convexity

Let $f:\mathbb{R}^n\to\mathbb{R}$ be twice differentiable

• f is strictly convex if

 $\nabla^2 f(x) \succ 0$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive definite)

• f is σ -strongly convex if and only if

 $\nabla^2 f(x) \succeq \sigma I$

for all $x \in \mathbb{R}^n$

Examples of strictly/strongly convex functions

Strictly convex

- $f(x) = -\log(x) + \iota_{>0}(x)$
- $f(x) = 1/x + \iota_{>0}(x)$
- $f(x) = e^x$
- $f(x) = e^{-x}$

Strongly convex

- $f(x) = \frac{\lambda}{2} \|x\|_2^2$
- $f(x) = \frac{1}{2}x^TQx$ where Q positive definite
- $f(x) = f_1(x) + f_2(x)$ where f_1 strongly convex and f_2 convex
- $f(x) = \frac{1}{2}x^TQx + \iota_C(x)$ where Q positive definite and C convex

Proof of two examples

Strict convexity of $f(x) = e^{-x}$:

 $\bullet \ \nabla f(x) = -e^{-x}, \ \nabla^2 f(x) = e^{-x} > 0 \ \text{for all} \ x \in \mathbb{R}$

Strong convexity of $f(x) = \frac{1}{2} x^T Q x$ with Q positive definite

• $\nabla f(x) = Qx$, $\nabla^2 f(x) = Q \succeq \lambda_{\min}(Q)I$ where $\lambda_{\min}(Q) > 0$

Smoothness

• A function is called β -smooth if its gradient is β -Lipschitz:

 $\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2$

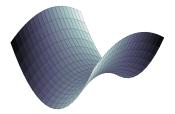
for all $x, y \in \mathbb{R}^n$ (it is not necessarily convex)

• Alternative equivalent definition of β -smoothness

 $f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y) - \frac{\beta}{2}\theta(1 - \theta)||x - y||^2$ $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) + \frac{\beta}{2}\theta(1 - \theta)||x - y||^2$

hold for every $x,y\in \mathbb{R}^n$ and $\theta\in [0,1]$

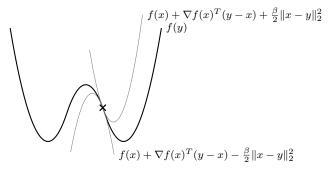
- Smoothness does not imply convexity
- Example:



First-order condition for smoothness

• f is β -smooth with $\beta \ge 0$ if and only if $f(y) \le f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} ||x-y||_2^2$ $f(y) \ge f(x) + \nabla f(x)^T (y-x) - \frac{\beta}{2} ||x-y||_2^2$

for all $x, y \in \mathbb{R}^n$

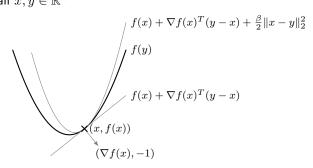


- Quadratic upper/lower bounds with curvatures defined by β
- Quadratic bounds coincide with function f at x

First-order condition for smooth convex

• f is β -smooth with $\beta \ge 0$ and convex if and only if $\begin{aligned} f(y) \le f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} \|x-y\|_2^2 \\ f(y) \ge f(x) + \nabla f(x)^T (y-x) \end{aligned}$

for all $x, y \in \mathbb{R}^n$



- Quadratic upper bounds and affine lower bound
- Bounds coincide with function f at x
- Quadratic upper bound is called *descent lemma*

Second-order condition for smoothness

Let $f:\mathbb{R}^n\to\mathbb{R}$ be twice differentiable

• f is β -smooth if and only if

$$-\beta I \preceq \nabla^2 f(x) \preceq \beta I$$

for all $x \in \mathbb{R}^n$

• f is β -smooth and convex if and only if

$$0 \preceq \nabla^2 f(x) \preceq \beta I$$

for all $x \in \mathbb{R}^n$

Convex Optimization Problems

Composite optimization form

• We will consider optimization problem on composite form

 $\min_{x} f(Lx) + g(x)$

where f and g convex function and \boldsymbol{L} a matrix

- Convex problem due to convexity preserving operations
- Can model constrained problems via indicator function
- This model format is suitable for many algorithms