Convex Sets

Pontus Giselsson

Today's lecture

Motivation and context

- What is optimization?
- Why optimization?
- Convex vs nonconvex optimization

Convex sets

- Definition
- Examples of convex sets
- Separating and supporting hyperplanes

What is optimization?

• Find point $x \in \mathbb{R}^n$ that minimizes a function $f : \mathbb{R}^n \to \mathbb{R}$:

$\mathop{\mathrm{minimize}}_x f(x)$

• Can also require x to belong to a set $S \subset \mathbb{R}^n$:

 $\underset{x \in S}{\operatorname{minimize}} \, f(x)$

• Example:

Why optimization?

- Many engineering problems can be modeled using optimization
 - Supervised learning
 - Optimal control
 - Signal reconstruction
 - Portfolio selection
 - Image classifiction
 - Circuit design
 - Estimation
 - ...
- Results in "optimal":
 - Model
 - Decision
 - Performance
 - Design
 - Estimate
 - ...

w.r.t. optimization problem model

• Different question: How good is the model?

Convex vs nonconvex optimization

- Convex optimization if set and function are convex
- Otherwise nonconvex optimization problem
- Why convexity?: Local minima are global minima
- Why go nonconvex?: Richer modeling capabilities

• If convex modeling enough, use it, otherwise try nonconvex

Convex Sets

Learning goals

- Know convex set definition
- Understand intersection, union, and convex hull
- Able to decide if set is convex based on
 - Graphical representation of set
 - Mathematical definition of set
- Understand supporting and separating hyperplanes

Convex sets

• A set C is convex if for every $x, y \in C$ and $\theta \in [0, 1]$:

$$\theta x + (1 - \theta)y \in C$$

• "Every line segment that connect any two points in C is in C"

• Will assume that all sets are nonempty and closed

Convex sets

• A set C is convex if for every $x, y \in C$ and $\theta \in [0, 1]$:

$$\theta x + (1 - \theta)y \in C$$

• "Every line segment that connect any two points in C is in C"

• Will assume that all sets are nonempty and closed

Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

• Convex combinations of x_1, \ldots, x_k are all points x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where $\theta_1 + \ldots + \theta_k = 1$ and $\theta_i \ge 0$

 $\bullet\,$ Convex hull: set of all convex combinations of points in $S\,$

Intersection and union

- Intersection $C = C_1 \cap C_2$ means $x \in C$ if $x \in C_1$ and $x \in C_2$
- Union $C = C_1 \cup C_2$ means $x \in C$ if $x \in C_1$ or $x \in C_2$

- Intersection of two convex sets is convex
- Union of two convex sets need not be convex

Affine sets

• Take any two points $x, y \in V$: V is affine if full line in V:

Lines and planes are affine sets

• Definition: A set V is affine if for every $x, y \in V$ and $\alpha \in \mathbb{R}$:

$$\alpha x + (1 - \alpha)y \in V \tag{1}$$

hence convex this holds in particular for $\alpha \in [0,1]$

Affine hyperplanes

• Affine hyperplanes in \mathbb{R}^n are affine sets that cut \mathbb{R}^n in two halves

- Dimension of affine hyperplane in \mathbb{R}^n is n-1 (If $s \neq 0$)
- All affine sets in \mathbb{R}^n of dimension n-1 are hyperplanes
- Mathematical definition:

$$h_{s,r} := \{ x \in \mathbb{R}^n : s^T x = r \}$$

where $s \in \mathbb{R}^n$ and $r \in \mathbb{R}$, i.e., defined by one *affine function*

• Vector s is called normal to hyperplane

Halfspaces

• A halfspace is one of the halves constructed by a hyperplane

• Mathematical definition:

$$H_{r,s} = \{x \in \mathbb{R}^n : s^T x \le r\}$$

• Halfspaces are convex, and vector \boldsymbol{s} is called normal to halfspace

Polytopes

• A *polytope* is intersection of halfspaces and hyperplanes

• Mathematical representation:

$$C = \{x \in \mathbb{R}^n : s_i^T x \le r_i \text{ for } i \in \{1, \dots, m\} \text{ and} \\ s_i^T x = r_i \text{ for } i \in \{m + 1, \dots, p\}\}$$

• Polytopes convex since intersection of convex sets

Set defined by convex function

- Suppose that $g:\mathbb{R}^n\to\mathbb{R}$ is a convex function
- The sublevel set of g:

$$C=\{x\in\mathbb{R}^n:g(x)\leq 0\}$$

is a convex set

• Example: construction giving 1D interval [a, b]

Examples

• Example: Levelsets of convex quadratic function

- Norm balls $\{x \in \mathbb{R}^n : ||x|| r \le 0\}$
- Ellipsoid $\{x \in \mathbb{R}^n : \frac{1}{2}x^TPx + q^Tx + r \leq 0\}$, P positive definite

Cones

• Definition: A set K is a cone if for all $x \in K$ and $\alpha \ge 0$: $\alpha x \in K$

Cones – Examples

A nonconvex cone

Convex cones:

- Linear subspaces $\{x \in \mathbb{R}^n : Ax = 0\}$ (but not affine subspaces)
- Halfspaces based on linear (not affine) hyperplanes $\{x : s^T x \leq 0\}$
- Positive semi-definite matrices $\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric and } x^T X x \ge 0 \text{ for all } x \in \mathbb{R}^n \}$
- Nonnegative orthant $\{x \in \mathbb{R}^n : x \ge 0\}$

Separating hyperplane theorem

- Suppose that $R,S\subseteq \mathbb{R}^n$ are two non-intersecting convex sets
- Then there exists hyperplane with S and R in opposite halves

• Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x \le r$$
 for all $x \in R$
 $s^T x \ge r$ for all $x \in S$

• The hyperplane $\{x: s^T x = r\}$ is called *separating hyperplane*

A strictly separating hyperplane theorem

- Suppose that $R, S \subseteq \mathbb{R}^n$ are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- Then there exists hyperplane with strict separation

• Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x < r$$
 for all $x \in R$
 $s^T x > r$ for all $x \in S$

Consequence – S is intersection of halfspaces

a closed convex set S is the intersection of all halfspaces that contain it

proof:

- $\bullet~$ let H be the intersection of all halfspaces containing S
- \Rightarrow : obviously $x \in S \Rightarrow x \in H$
- ⇐: assume x ∉ S, since S closed and convex and x compact (a point), there exists a strictly separating hyperplane, i.e., x ∉ H:

Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

- We call the halfspace that contains the set supporting halfspace
- s is called *normal vector* to S at x
- Definition: Hyperplane $\{y: s^Ty = r\}$ supports S at $x \in bd$ S if

$$s^T y \leq r$$
 for all $y \in S$ and $s^T x = r$

Supporting hyperplane theorem

Let S be a nonempty convex set and let $x\in \mathrm{bd}(S).$ Then there exists a supporting hyperplane to S at x.

- Does not exist for all point on boundary for nonconvex sets
- Many supporting hyperplanes exist for points of nonsmoothness

Normal cone operator

• Normal cone operator contains normals to supporting hyperplanes

- Defined also for points not on boundary
 - For $x \in S$: $0 \in N_S(x)$
 - For $x \in \text{int } S$: the normal cone $N_S(x) = 0$
- Definition: The normal cone operator to a set S is

$$N_S(x) = \begin{cases} \{s : s^T(y - x) \le 0 \text{ for all } y \in S\} & \text{if } x \in S \\ \emptyset & \text{else} \end{cases}$$

i.e., vectors that form obtuse angle between s and all $y-x\text{, }y\in S$