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Today’s lecture

Motivation and context

• What is optimization?

• Why optimization?

• Convex vs nonconvex optimization

Convex sets

• Definition

• Examples of convex sets

• Separating and supporting hyperplanes
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What is optimization?

• Find point x ∈ Rn that minimizes a function f : Rn → R:

minimize
x

f(x)

• Can also require x to belong to a set S ⊂ Rn:

minimize
x∈S

f(x)

• Example:
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Why optimization?

• Many engineering problems can be modeled using optimization
• Supervised learning
• Optimal control
• Signal reconstruction
• Portfolio selection
• Image classifiction
• Circuit design
• Estimation
• ...

• Results in “optimal”:
• Model
• Decision
• Performance
• Design
• Estimate
• ...

w.r.t. optimization problem model
• Different question: How good is the model?
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Convex vs nonconvex optimization

• Convex optimization if set and function are convex

• Otherwise nonconvex optimization problem

• Why convexity?: Local minima are global minima

• Why go nonconvex?: Richer modeling capabilities

nonconvex function convex function

• If convex modeling enough, use it, otherwise try nonconvex
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Convex Sets
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Learning goals

• Know convex set definition

• Understand intersection, union, and convex hull

• Able to decide if set is convex based on
• Graphical representation of set
• Mathematical definition of set

• Understand supporting and separating hyperplanes

7



Convex sets

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

• Will assume that all sets are nonempty and closed
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Convex sets

• A set C is convex if for every x, y ∈ C and θ ∈ [0, 1]:

θx+ (1− θ)y ∈ C

• “Every line segment that connect any two points in C is in C”

Nonconvex Convex

Nonconvex Nonconvex

• Will assume that all sets are nonempty and closed
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Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

• Convex combinations of x1, . . . , xk are all points x of the form

x = θ1x1 + θ2x2 + . . .+ θkxk

where θ1 + . . .+ θk = 1 and θi ≥ 0
• Convex hull: set of all convex combinations of points in S
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Intersection and union

• Intersection C = C1 ∩ C2 means x ∈ C if x ∈ C1 and x ∈ C2

• Union C = C1 ∪ C2 means x ∈ C if x ∈ C1 or x ∈ C2

C1 C2

• Intersection of two convex sets is convex

• Union of two convex sets need not be convex
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Affine sets

• Take any two points x, y ∈ V : V is affine if full line in V :

x

y

Lines and planes are affine sets

• Definition: A set V is affine if for every x, y ∈ V and α ∈ R:

αx+ (1− α)y ∈ V (1)

hence convex this holds in particular for α ∈ [0, 1]
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Affine hyperplanes

• Affine hyperplanes in Rn are affine sets that cut Rn in two halves

s

s

• Dimension of affine hyperplane in Rn is n− 1 (If s 6= 0)

• All affine sets in Rn of dimension n− 1 are hyperplanes

• Mathematical definition:

hs,r := {x ∈ Rn : sTx = r}

where s ∈ Rn and r ∈ R, i.e., defined by one affine function

• Vector s is called normal to hyperplane
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Halfspaces

• A halfspace is one of the halves constructed by a hyperplane

s

• Mathematical definition:

Hr,s = {x ∈ Rn : sTx ≤ r}

• Halfspaces are convex, and vector s is called normal to halfspace
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Polytopes

• A polytope is intersection of halfspaces and hyperplanes

• Mathematical representation:

C = {x ∈ Rn : sTi x ≤ ri for i ∈ {1, . . . ,m} and

sTi x = ri for i ∈ {m+ 1, ..., p}}
• Polytopes convex since intersection of convex sets

14



Set defined by convex function

• Suppose that g : Rn → R is a convex function

• The sublevel set of g:

C = {x ∈ Rn : g(x) ≤ 0}

is a convex set

• Example: construction giving 1D interval [a, b]

x

g(x)

a b
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Examples

• Example: Levelsets of convex quadratic function
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• Norm balls {x ∈ Rn : ‖x‖ − r ≤ 0}
• Ellipsoid {x ∈ Rn : 1

2x
TPx+ qTx+ r ≤ 0}, P positive definite
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Cones

• Take any point x ∈ K: K is a cone if full ray in K

x

• Definition: A set K is a cone if for all x ∈ K and α ≥ 0: αx ∈ K
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Cones – Examples

• A nonconvex cone

• Convex cones:
• Linear subspaces {x ∈ Rn : Ax = 0} (but not affine subspaces)
• Halfspaces based on linear (not affine) hyperplanes {x : sTx ≤ 0}
• Positive semi-definite matrices
{X ∈ Rn×n : X symmetric and xTXx ≥ 0 for all x ∈ Rn}

• Nonnegative orthant {x ∈ Rn : x ≥ 0}
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Separating hyperplane theorem

• Suppose that R,S ⊆ Rn are two non-intersecting convex sets
• Then there exists hyperplane with S and R in opposite halves

sTx = r

R

S

Example

R

S

Counter-example
R nonconvex

• Mathematical formulation: There exists s 6= 0 and r such that

sTx ≤ r for all x ∈ R
sTx ≥ r for all x ∈ S

• The hyperplane {x : sTx = r} is called separating hyperplane
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A strictly separating hyperplane theorem

• Suppose that R,S ⊆ Rn are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

• Then there exists hyperplane with strict separation

sTx = r

R

S

Example

R = {(x, y) : y ≥ x−1, x > 0}

S = {(x, y) : y ≤ 0}

Counter example
R,S not compact

• Mathematical formulation: There exists s 6= 0 and r such that

sTx < r for all x ∈ R
sTx > r for all x ∈ S
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Consequence – S is intersection of halfspaces

a closed convex set S is the intersection of all halfspaces that contain it

proof:

• let H be the intersection of all halfspaces containing S
• ⇒: obviously x ∈ S ⇒ x ∈ H
• ⇐: assume x 6∈ S, since S closed and convex and x compact (a

point), there exists a strictly separating hyperplane, i.e., x 6∈ H:

S

⇒

S x

⇐
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Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

s
s
s

s

• We call the halfspace that contains the set supporting halfspace

• s is called normal vector to S at x

• Definition: Hyperplane {y : sT y = r} supports S at x ∈ bd S if

sT y ≤ r for all y ∈ S and sTx = r
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Supporting hyperplane theorem

Let S be a nonempty convex set and let x ∈ bd(S). Then there exists
a supporting hyperplane to S at x.

• Does not exist for all point on boundary for nonconvex sets

• Many supporting hyperplanes exist for points of nonsmoothness

s
s
s

s
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Normal cone operator

• Normal cone operator contains normals to supporting hyperplanes

S

• Defined also for points not on boundary
• For x ∈ S: 0 ∈ NS(x)
• For x ∈ int S: the normal cone NS(x) = 0

• Definition: The normal cone operator to a set S is

NS(x) =

{
{s : sT (y − x) ≤ 0 for all y ∈ S} if x ∈ S
∅ else

i.e., vectors that form obtuse angle between s and all y−x, y ∈ S
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