Deep Learning

Pontus Giselsson

Learning goals

Know what a deep neural network (DNN) is

Know standard deep learning model structures

Understand why training problem nonconvex

Understand relation between DNN and convex supervised learning
Know about different regularization methods in deep learning
Know that backpropagation can compute gradient for DNN
Understand backpropagation and that it is based on chain rule

Be able to implement backpropagation in simple setting

Deep learning

® Can be used both for classification and regression

® Deep learning training problem is of the form

N
inimi L(m(x:;0),y:
mmlemlze; (m(zi;6),v:)

where typically
® L(u,y) = 1|lu—yl|3 is used for regression
® L(u,y) =log (Zle e"f) —yTuw is used for K-class classification
¢ Difference to previous convex methods: Nonlinear model m(x; 0)

® Deep learning regression generalizes least squares
® DL classification generalizes multiclass logistic regression
® Nonlinear model makes training problem nonconvex

Loss function gradient

® | oss functions defined as
L) = ([o)) @) = o7

where

® 5 =] for regression (least squares loss)
® o is softmax for classification (multiclass logistic regression)

® Formula for gradient in both cases

Deep learning — Prediction

® | east squares and multiclass logistic losses derived to satisfy
o(m(z;0)) —y =0

(gradient equals zero) after training, where
® o = I for regression
® 5:R¥ — Ax is softmax for multiclass classification
® This derivation is independent of model structure

® Predict y for new data x same way as for convex methods
® Regression: m(x;6) is the prediction for y
® C(lassification: o(m(x;8)) outputs probabilities for class
belonging, predict x in class with largest probability

Deep learning — Model

® Nonlinear model of the following form is often used:
m(x;0) := Wyon_1(Wn_10n—a(--- (Waor(Wiz +b1) +b2) - -+) + bn_1)

® The o; are nonlinear and called activation functions

® Composition of nonlinear (o) and affine (W, (-) + b;) operations
Each o; function constitutes a hidden layer in the model network
Graphical representation with three hidden layers

o2(")
o1(+) ; o3(+)
7N\
Q7 oo
X ,:.:égqg“‘ X »’,;:.‘\

>
. SIH , T AN
§ wog‘(‘.(’”% g'&»

KIS LT
N LSS

® Why this structure? (Assumed) universal function approximators

+ bn,

Activation functions

® Activation function o; takes as input the output of W;(-) + b,
® Often a function 7; : R — R is applied to each element
i (u1)
® Example: 0; : R® = R3is 0, (u) = |7, (u2)
7 (u3)

® We will use notation over-loading and call both functions o

Qi

Examples of activation functions

Name o(u) Graph
A
RelLU max(u, 0) i
LeakyReLU max(u, au) i
—
i >
ELU u if u>0
ale —1) else
—
i >
SELU \Ju if u>0
ale* —1) else

Examples of affine transformations

® Dense (fully connected): Dense W;
® Sparse: Sparse W;
® Convolutional layer (convolution with small pictures)
® Fixed (random) sparsity pattern
® Subsampling: reduce size, W; fat (smaller output than input)
® max pooling
® average pooling
® 2-norm pooling

Learning features

® Used prespecified feature maps (or Kernels) in convex methods

® Deep learning instead learns feature map during training
® Define parameter (weight) dependent feature vector:

d(x;0) := o1 (Who10n—2(- - - (Wao1 (Wiz+b1)+b2) - - -)+bn-1)

® Model becomes m(z;6) = Wy¢(z;6) + by,
® Inserted into training problem:

N
miniemize ; L(Wypé(4;0) + b, yi)
same as before, but with learned (parameter-dependent) features

® | earning features at training makes training nonconvex

10

Learning features — Graphical representation

® Fixed features gives convex training problems

é(xi) g
IS
_ 3
=
g ¢ i
] S

® | earning features gives nonconvex training problems

® Qutput of last activation function is feature vector

m(z;; 60)

11

Design choices

Many design choices in building model to create good features

® Number of layers
Width of layers
® Types of layers

Types of activation functions
Use different model structure (e.g., residual network)

12

Overparameterization

Assume fully connected network with n layers and N samples
Assume all layers have p outputs and data z; € RP

Number of weights (W;)i: p°n and (b;)i: pn

Assume N ~ p? then factor n more weights than samples

Often overparameterized = can lead to overfitting

13

Reduce overfitting

Reduce number of weights

® Sparse weight tensors (e.g., convolutional layers)

® Subsampling (gives fewer weights deeper in network)
Regularization

® Explicit regularization term in cost function, e.g., Tikhonov
® Data augmentation — more samples, artificial often OK
® Early stopping — stop algorithm before convergence

® Dropouts — next slide

14

Dropouts

® Training problem solved by stochastic gradient method
® Compute gradients on different networks to avoid overfitting
® Take out nodes from network with probability p

® Use scaled po in prediction (on average used po in training)

15

Performance with increasing depth

® Increasing depth can deteriorate performance
® Deep networks may even have worse training errors than shallow

® Intuition: deeper layers bad at approximating identity mapping

16

Residual networks

Add skip connections between layers
Instead of network architecture with z; = x; (see figure):

Zj+1 = O'j(Wij + b]) fOFj S {17 ey —= 1}
use residual architecture
Zj+1 = Zj +O'j(Wij + bj> forj S {1, ey, — 1}

Assume o(0) =0, W; =0,b; =0for j=1,...,m (m<n-—1)
= deeper part of network is identity mapping and does no harm
Learns variation from identity mapping (residual)

17

Graphical representation

For graphical representation, first collapse nodes into single node

e 0.2() {23 N
o1(-
21
I
Il
g
hi(-)
- -
N
lL z1 hl() z2
8

18

Graphical representation

® Collapsed network representation

® Residual network

® If some h; = 0 gives same performance as shallower network

19

zZ1

T =

Regularization — Layer Dropouts

Compute gradient on different networks to avoid overfitting
In residual networks, layers are approximately identity

We can drop out layers instead of individual neurons

Drop layer with probability p

Called stochastic depth residual networks

eamblamd emblamd

20

Training algorithm

Deep neural networks trained using stochastic gradient descent
DNN weights are updated via gradients in training
Gradient of cost is sum of gradients of summands (samples)

Gradient of each summand computed using backpropagation

21

Backpropagation

Backpropagation is reverse mode automatic differentiation
Based on chain-rule
Backpropagation must be performed per sample

Our derivation assumes:
® Fully connected layers (W full, if not, set elements in W to 0)
® Activation functions o;(v) = (oj(v1),...,0;(vp)) element-wise
(overloading of o; notation)
® Cost L(u,y) = ([o(v)dv) (u) — y"u for some mapping o
® Weights W; are matrices, samples x; and responses y; are vectors
No residual connections

22

Preliminaries — Jacobians

® The Jacobian of a function f: R™ — R™ is given by

rofs ... Of
af _ |7 T g
N T
L Oxq Ox,,
® The Jacobian of a function f : RP*™ — R is given by
[of ... _8f
g _ (9-7:11 OT1n . -
Or o . 8
_accpl OTpn

® The Jacobian of a function f: RP*™ — R™ is at layer j given by

of1 ... Of
oz j1 0T jn
Tl Ofm .. Ofm
0z j1 0T jn

the full Jacobian is a 3D tensor in R™*PXn

Jacobian vs gradient

® The Jacobian of a function f : R™ — R is given by

of _Tar ... or
8.13_ Oz, Oy,

® The gradient of a function f : R™ — R is given by

6"]}1

V=]
of
Ox,

i.e., transpose of Jacobian for f: R™ - R
® Chain rule holds for Jacobians:
of _ 050z
dr 0z dx

24

Jacobian vs gradient — Example

® Consider differentiable f: R™ — R and L € R™*"
¢ Compute Jacobian of g = (f o L) using chain rule:
® Rewrite as g(z) = f(z) where z = Lx
® Compute Jacobian by partial Jacobians % and %:

dg 990z 0f 0z

Or 020z 020z
® Know gradient of (f o L)(x) satisfies

=Vf(z)"L=Vf(Lz)"LeR™™

V(folL)(x)=LTVf(Lx) € R

which is transpose of Jacobian

25

Backpropagation

® Compute gradient/Jacobian of
L(m(x;0),y:)
w.rt. 0 = {(W;,b;}_;, where
m(zi;0) = Wnon1(Wn_10n_2(- - (Waort(Wizi + b1) +b2) -+) + bn_1) + by,

® Rewrite as function with states z;

L(zn+1,9i)
where zj1 = 0;(Wjz; +b;) for j € {1,...,n}
and Z1 = T4

where o, (u) = u

26

Graphical representation

® Per sample loss function

L(Zn+1, yz)

where Zj+1 :O'j(Wij+bj) forj € {1,

and Z1 =X

where o, (u) = u
® Graphical representation

S
]2
5~\\\0
17

iﬁvcg

&

SRS

X
'O'O
(154
SAETN
.‘.‘
(A
ORKKT
SETEED
S
@)

x; = 21

[

;n}

27

Backpropagation

® Jacobian of L w.r.t. W; and b; can be computed as

oL o oL azm_l o sz+2 8Zj+1
BWj - 8Zn+1 8zn aZj+1 8Wj
87L o oL 3zn+1) 8Zj+2 8Zj+1

8bj - 8zn+1 8zn

B aZj+1 8b3

where we mean derivative w.r.t. first argument in L

® Backpropagation evaluates partial Jacobians as follows

OL

ow;

oL

ab;

((
((

8L 62’7,,4_1

0zpt1 Ozn
OL 8Z7L+1

8Zj+2 aZj_H
6Zj+1 8WJ

8Zn+1 azn

0212\ 0zj+1
aZj+1 8b]

28

Backpropagation

® Jacobian of L(zp11,¥:) W.r.t. z,41 (transpose of gradient)
oL
E = (0(zn+41) — yi)T

i.e., Zn41 needed = forward pass: z1 = z;, zj41 = 0;(W;z; +b;)
® Backward pass, store §;:

8L _ 8[4 3zn+1 L 8zj+2
0%z - 0zpy1 Oz
——

8zj+1
63:+1
~—
6T
5
e Compute

oL _ oL 82’j+1 5 182j+1
8Wj 8zj+1 0W] It GW]
87[/ - 8L 6Zj+1 - 8Zj+1

8bj o asz 8b] AR 8bj

29

Dimensions

® Let z; € R™, consequently W; € R™+1*" p; € R™

® Dimensions

oL _ (OL 8zn+1) (9Zj+2 aZj+1
8Wj 8Zn+1 an 8Zj+1 8W]
N—— ——— N—— N——
IXNpq1 Mnt1 XNn Nj42XNj+1 Nj41XMNj41 XN,
N————
1Xng,
1><7Lj+1
i1 XN
oL _ ((oL aan) aZj+2> (92j+1
(9bj 82’n+1 82’” 8Zj+1 6bj
N——
1><TLJ'+1 Nj41 XN
1xn;

® Vector matrix multiplies except for in last step

® Multiplication with tensor daz;‘jl can be simplified

® Backpropagation variables §; € R™ are vectors (not matrices)

30

Partial Jacobian %
Zj
® Recall relation zj41 = 0;(W,z; + b;) and let v; = Wjz; + b;
® Chain rule gives
aZj+1 82’]'4_1 81)]'
_— = d. .
(’)zj 8vj (’)zj 1ag(aj
= diag((f;(szj + bj))WJ

where, with abuse of notation (notation overloading)

o’ (u1)
oj(u) =
O-_;'(unj+1)
® Reason: oj(u) = [0j(u1),...,0j(tn,,,)]" with
o : RP+1 -5 R™+1, gives
! (1)
do; _ - — diag(c)(u)
du - - dlaglo;
Uj(un'j+1)

31

Partial Jacobian ¢7 = gZL

® For any vector ;11 € R7+1%1 we have

0z; 1
5;21#;; 5+1d1ag((szj+bj))Wj

= (W} (6], diag(a(W;z; +b;)))")"

= (W, (841 © 0§ (W;z; + b))

where ® is element-wise (Hadamard) product
® We have defined 6}, 6z , then

3L T 8Zn+1
(c)izn_ n+1 8Zn

= (W (0nt1© 0 (Wazn + b)) "

On

T _
5n -

® Consequently, using induction:
oL T 6Zj+1

5 = 01— = (W (801 © 03(Wiz; +b)))"
J J

J

T
6; =

d;
32

Information needed to compute %
J

oL

® To compute first Jacobian 5=, we need z, = forward pass

e Computing

8[/ T 82’/_;,_1 T T T
(’TZJ- =041 szj = (W; (041 © 05(Wjzj + b)) =95

is done using a backward pass
;=W (5j41 © 0§ (W;z; +b;))

® All z; (or v; = Wjz; + b;) need to be stored for backward pass

33

oL

Partial Jacobian o

® Computed by
8L o 8L 6zj+1 T 6Zj+1
8Wj o 6zj+1 8W] A 8W]

Where Zj+1 = Uj(vj) and 'Uj = szj +bj

® Recall 855‘21 is 3D tensor, compute Jacobian w.r.t. row [(W});
0
8z,-+1 82;4,.1 81}" T . ’ ;
541 a(VjVj)l =611 6;)]' 8(W;~)]~ = 0,41 diag(o;(vs)) ZJT
0
0 0
= (611 © 05 (Wizs + b)) | 2] | = (65501 © 0f(Wiz; +b)));2]

0 0 3

Partial Jacobian 3= cont’d
J

® Stack Jacobians w.r.t. rows to get full Jacobian:

T 0zj41
AR C (041 © 05 (Wjzj +bj))z]
8L T 8Zj+1 - . o .
8Wj AR 8W] T 6z . o , ' T
(Sj_i_lm (5j+1 O] O'j(Wij + bj)nj+1)zj

= (641 © G(W;zj + b))z
forall je{l,...,n—1}

® Dimension of result is nj41 X nj, which matches W;

® This is used to update W weights in algorithm

35

oL

Partial Jacobian <=

® Recall zj41 = 0;(v;) where v; =

® Computed by

(r“)iL OL 0zj41 81)]
8bj 8Z]+1 81}] 8b

ob,

Wz + b;

r 0711 0v;
A 8vj abj
= ((5j+1 O) O'j(Wij + bj))T

= 5;“-F+1 diag(

oli(v

i)

36

Backpropagation summarized

. Forward pass: Compute and store z; (or v; = W;z; + b;):
zj+1 = 05(Wjzj + b))

where 21 = x; and o, = Id

. Backward pass:

;=W (841 © 05 (W;z; + b))

with 6n+1 = (U(Zn+1) - yi)T
. Weight update Jacobians (used in SGD)

oL
FiA (0541 © 0§ (W;z; + b))z
J
oL
. (0j41 0 U;-(ijj + bj))T
J

37

Vanishing and exploding gradient problem

® For some activation functions, gradients can vanish

® For other activation functions, gradients can explode

38

Vanishing gradient example: Sigmoid

Assume ||| <1 for all j and ||, 41]| < C
Maximal derivative of sigmoid (o) is 0.25
Then

H H 6, = [WF (510 © (W25 + b)) < 02564
<0.25"7 |6, < 0.25" 7T C

Hence, as n grows, gradients can become very small for small i
In general, vanishing gradient if ¢’ < 1 everywhere
Similar reasoning: exploding gradient if o’ > 1 everywhere

Hence, need ¢/ =1 in large regions

39

Examples of activation functions
Activation functions that (partly) avoid vanishing gradients

Name o(u) Graph

RelLU max(u, 0)

LeakyReLU max(u, au)

e
i >
ELU u ifu>0
ale* —1) else
P P
i >
SELU \ U ifu>0
afe* —1) else
P

40

Avoiding exploding gradient — Gradient clipping

e “Clip" (constrain) gradients, e.g.,: |[Wjll2 <1, |(W;)u| < ¢
® Sometime enforced:

® within backpropagation (no gradient computed)
® after backpropagation using projection (projected gradient)

® Using ||Wjl]l2 <1, ||bj]l2 < d and 1-Lipschitz o; controls growth:
® Forward pass (assuming 0;(0) = 0): zj11 = 0;(W;z; + b;)

llzj+1ll2 = lloy(Wiz; + bj)ll2 < [[Wjz; + bjllz < [[Wjz;ill2 + [|b;l]2
<zl +d
® Backward pass: §; = W} (6,41 ® of(W;z; + bj))

J

165112 = W} (8541 ® 05 (Wjzj + b)ll2 < W] l|2]18,41 © o (Wjz; + bj)|
<8541l

® Initialize weights from normal distr., scale to have |W;|s =1

41

For large networks

® For large networks ||V ||2 may be too expensive to compute
® Approximate, e.g., using (where W; € R"i+1%")
® Frobenius norm |W;||r < 1:

[Willz < [[Wjllr <1

1

® Element-wise constraints |(W}) ;x| < Wiresot

2 2 2 1 nj4+1M; _
2 < . — . < —_ " i
W55 < 11W; 1% ;(WJ)”“ < Z T = ez = 1
® Maybe increase upper bounds since ||WW;||2 upper approximated
® |nitialize weights from normal distr., scale according to above
® Many other heuristics exist

42

