Deep Learning

Pontus Giselsson

Learning goals

- Know what a deep neural network (DNN) is
- Know standard deep learning model structures
- Understand why training problem nonconvex
- Understand relation between DNN and convex supervised learning
- Know about different regularization methods in deep learning
- Know that backpropagation can compute gradient for DNN
- Understand backpropagation and that it is based on chain rule
- Be able to implement backpropagation in simple setting

Deep learning

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

where typically

- $L(u,y) = \frac{1}{2} \|u-y\|_2^2$ is used for regression
- $L(u, y) = \log \left(\sum_{j=1}^{K} e^{u_j} \right) y^T u$ is used for K-class classification
- Difference to previous convex methods: Nonlinear model $m(x; \theta)$
 - Deep learning regression generalizes least squares
 - DL classification generalizes multiclass logistic regression
 - Nonlinear model makes training problem nonconvex

Loss function gradient

Loss functions defined as

$$L(u,y) = \left(\int \sigma(v)dv\right)(u) - y^T u$$

where

- $\sigma = I$ for regression (least squares loss)
- σ is softmax for classification (multiclass logistic regression)
- Formula for gradient in both cases

$$\nabla L(\cdot, y)(u) = \sigma(u) - y$$

Deep learning – Prediction

· Least squares and multiclass logistic losses derived to satisfy

$$\sigma(m(x;\theta)) - y \approx 0$$

(gradient equals zero) after training, where

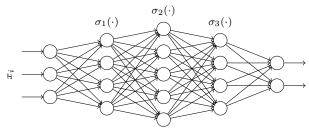
- $\sigma = I$ for regression
- $\sigma : \mathbb{R}^K \to \Delta_K$ is *softmax* for multiclass classification
- This derivation is independent of model structure
- Predict y for new data x same way as for convex methods
 - Regression: $m(x; \theta)$ is the prediction for y
 - Classification: σ(m(x; θ)) outputs probabilities for class belonging, predict x in class with largest probability

Deep learning – Model

• Nonlinear model of the following form is often used:

 $m(x;\theta) := W_n \sigma_{n-1} (W_{n-1} \sigma_{n-2} (\cdots (W_2 \sigma_1 (W_1 x + b_1) + b_2) \cdots) + b_{n-1}) + b_n,$

- The σ_j are nonlinear and called activation functions
- Composition of nonlinear (σ_j) and affine $(W_j(\cdot) + b_j)$ operations
- Each σ_i function constitutes a hidden layer in the model network
- Graphical representation with three hidden layers



• Why this structure? (Assumed) universal function approximators

Activation functions

- Activation function σ_j takes as input the output of $W_j(\cdot) + b_j$
- Often a function $\bar{\sigma}_j:\mathbb{R}\to\mathbb{R}$ is applied to each element

• Example:
$$\sigma_j : \mathbb{R}^3 \to \mathbb{R}^3$$
 is $\sigma_j(u) = \begin{bmatrix} \bar{\sigma}_j(u_1) \\ \bar{\sigma}_j(u_2) \\ \bar{\sigma}_j(u_3) \end{bmatrix}$

• We will use notation over-loading and call both functions σ_j

Name $\sigma(u)$ Graph Sigmoid $\frac{1}{1+e^{-u}}$ ReLU $\max(u, 0)$ LeakyReLU $\max(u, \alpha u)$ $\begin{cases} u & \text{if } u \ge 0\\ \alpha(e^u - 1) & \text{else} \end{cases}$ ELU $\lambda \begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ SELU

Examples of activation functions

Examples of affine transformations

- Dense (fully connected): Dense W_j
- Sparse: Sparse W_j
 - Convolutional layer (convolution with small pictures)
 - Fixed (random) sparsity pattern
- Subsampling: reduce size, W_j fat (smaller output than input)
 - max pooling
 - average pooling
 - 2-norm pooling

Learning features

- Used prespecified feature maps (or Kernels) in convex methods
- Deep learning instead learns feature map during training
 - Define parameter (weight) dependent feature vector:

$$\phi(x;\theta) := \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})$$

- Model becomes $m(x; \theta) = W_n \phi(x; \theta) + b_n$
- Inserted into training problem:

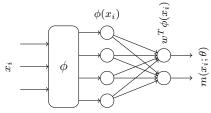
$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \theta) + b_n, y_i)$$

same as before, but with learned (parameter-dependent) features

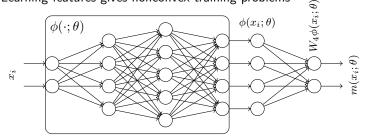
• Learning features at training makes training nonconvex

Learning features – Graphical representation

• Fixed features gives convex training problems



• Learning features gives nonconvex training problems



• Output of last activation function is feature vector

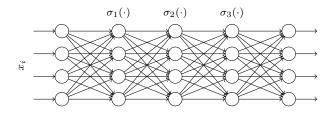
Design choices

Many design choices in building model to create good features

- Number of layers
- Width of layers
- Types of layers
- Types of activation functions
- Use different model structure (e.g., residual network)

Overparameterization

- Assume fully connected network with n layers and N samples
- Assume all layers have p outputs and data $x_i \in \mathbb{R}^p$
- Number of weights $(W_j)_{lk}$: p^2n and $(b_j)_l$: pn
- Assume $N \approx p^2$ then factor n more weights than samples
- Often overparameterized \Rightarrow can lead to overfitting



Reduce overfitting

Reduce number of weights

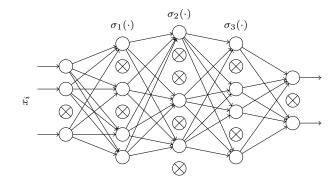
- Sparse weight tensors (e.g., convolutional layers)
- Subsampling (gives fewer weights deeper in network)

Regularization

- Explicit regularization term in cost function, e.g., Tikhonov
- Data augmentation more samples, artificial often OK
- Early stopping stop algorithm before convergence
- Dropouts next slide

Dropouts

- Training problem solved by stochastic gradient method
- Compute gradients on different networks to avoid overfitting
- Take out nodes from network with probability ρ



• Use scaled $\rho\sigma$ in prediction (on average used $\rho\sigma$ in training)

Performance with increasing depth

- Increasing depth can deteriorate performance
- Deep networks may even have worse training errors than shallow
- Intuition: deeper layers bad at approximating identity mapping

Residual networks

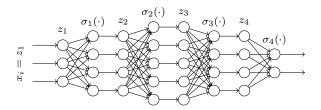
- Add skip connections between layers
- Instead of network architecture with $z_1 = x_i$ (see figure):

$$z_{j+1} = \sigma_j(W_j z_j + b_j)$$
 for $j \in \{1, \dots, n-1\}$

use residual architecture

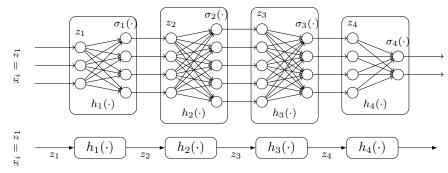
$$z_{j+1} = z_j + \sigma_j (W_j z_j + b_j)$$
 for $j \in \{1, \dots, n-1\}$

- Assume $\sigma(0) = 0$, $W_j = 0$, $b_j = 0$ for j = 1, ..., m (m < n 1) \Rightarrow deeper part of network is identity mapping and does no harm
- Learns variation from identity mapping (residual)



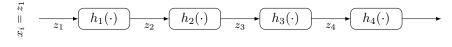
Graphical representation

For graphical representation, first collapse nodes into single node

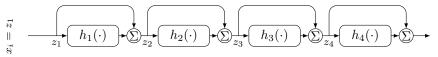


Graphical representation

• Collapsed network representation



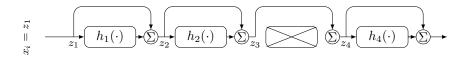
Residual network



• If some $h_j = 0$ gives same performance as shallower network

Regularization – Layer Dropouts

- Compute gradient on different networks to avoid overfitting
- In residual networks, layers are approximately identity
- We can drop out layers instead of individual neurons
- Drop layer with probability ρ
- Called stochastic depth residual networks



Training algorithm

- Deep neural networks trained using stochastic gradient descent
- DNN weights are updated via gradients in training
- Gradient of cost is sum of gradients of summands (samples)
- Gradient of each summand computed using backpropagation

Backpropagation

- Backpropagation is reverse mode automatic differentiation
- Based on chain-rule
- Backpropagation must be performed per sample
- Our derivation assumes:
 - Fully connected layers (W full, if not, set elements in W to 0)
 - Activation functions $\sigma_j(v) = (\sigma_j(v_1), \dots, \sigma_j(v_p))$ element-wise (overloading of σ_j notation)
 - Cost $L(u, y) = (\int \sigma(v) dv)(u) y^T u$ for some mapping σ
 - Weights W_j are matrices, samples x_i and responses y_i are vectors
 - No residual connections

Preliminaries – Jacobians

• The Jacobian of a function $f:\mathbb{R}^n\to\mathbb{R}^m$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

• The Jacobian of a function $f:\mathbb{R}^{p\times n}\rightarrow\mathbb{R}$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_{p1}} & \cdots & \frac{\partial f}{\partial x_{pn}} \end{bmatrix} \in \mathbb{R}^{p \times n}$$

• The Jacobian of a function $f:\mathbb{R}^{p\times n}\to\mathbb{R}^m$ is at layer j given by

$$\begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix}_{:,j,:} = \begin{bmatrix} \frac{\partial f_1}{\partial x_{j_1}} & \cdots & \frac{\partial f_1}{\partial x_{j_n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_{j_1}} & \cdots & \frac{\partial f_m}{\partial x_{j_n}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

the full Jacobian is a 3D tensor in $\mathbb{R}^{m \times p \times n}$

Jacobian vs gradient

• The Jacobian of a function $f:\mathbb{R}^n\to\mathbb{R}$ is given by

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• The gradient of a function $f:\mathbb{R}^n\to\mathbb{R}$ is given by

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

i.e., transpose of Jacobian for $f:\mathbb{R}^n\to\mathbb{R}$

• Chain rule holds for Jacobians:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$

Jacobian vs gradient – Example

- Consider differentiable $f:\mathbb{R}^m\to\mathbb{R}$ and $L\in\mathbb{R}^{m\times n}$
- Compute Jacobian of $g = (f \circ L)$ using chain rule:
 - Rewrite as g(x) = f(z) where z = Lx
 - Compute Jacobian by partial Jacobians $\frac{\partial f}{\partial z}$ and $\frac{\partial z}{\partial x}$:

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial z}\frac{\partial z}{\partial x} = \frac{\partial f}{\partial z}\frac{\partial z}{\partial x} = \nabla f(z)^T L = \nabla f(Lx)^T L \in \mathbb{R}^{1 \times n}$$

• Know gradient of $(f \circ L)(x)$ satisfies

$$\nabla (f \circ L)(x) = L^T \nabla f(Lx) \in \mathbb{R}^n$$

which is transpose of Jacobian

Backpropagation

• Compute gradient/Jacobian of

$$L(m(x_i; \theta), y_i)$$

w.r.t. $\theta = \{(W_j, b_j\}_{j=1}^n, \text{ where }$

 $m(x_i;\theta) = W_n \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x_i+b_1)+b_2)\cdots)+b_{n-1})+b_n$

• Rewrite as function with states z_j

$$L(z_{n+1},y_i)$$
 where $z_{j+1} = \sigma_j(W_j z_j + b_j)$ for $j \in \{1,\ldots,n\}$ and $z_1 = x_i$

where $\sigma_n(u) \equiv u$

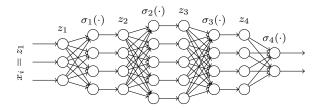
Graphical representation

• Per sample loss function

 $L(z_{n+1},y_i)$ where $z_{j+1} = \sigma_j(W_j z_j + b_j)$ for $j \in \{1,\ldots,n\}$ and $z_1 = x_i$

where $\sigma_n(u) \equiv u$

• Graphical representation



Backpropagation

• Jacobian of L w.r.t. W_j and b_j can be computed as

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j}$$
$$\frac{\partial L}{\partial b_j} = \frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j}$$

where we mean derivative w.r.t. first argument in L

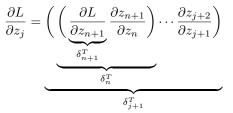
Backpropagation evaluates partial Jacobians as follows

$$\frac{\partial L}{\partial W_j} = \left(\left(\frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial W_j}$$
$$\frac{\partial L}{\partial b_j} = \left(\left(\frac{\partial L}{\partial z_{n+1}} \frac{\partial z_{n+1}}{\partial z_n} \right) \cdots \frac{\partial z_{j+2}}{\partial z_{j+1}} \right) \frac{\partial z_{j+1}}{\partial b_j}$$

Backpropagation

• Jacobian of $L(z_{n+1}, y_i)$ w.r.t. z_{n+1} (transpose of gradient) $\frac{\partial L}{\partial z_{n+1}} = (\sigma(z_{n+1}) - y_i)^T$

i.e., z_{n+1} needed \Rightarrow forward pass: $z_1 = x_i$, $z_{j+1} = \sigma_j(W_j z_j + b_j)$ • Backward pass, store δ_j :

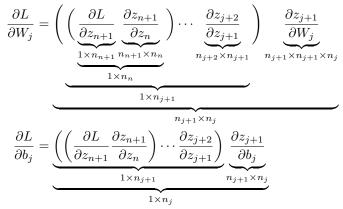


Compute

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1} \frac{\partial z_{j+1}}{\partial W_j}$$
$$\frac{\partial L}{\partial b_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial b_j} = \delta_{j+1} \frac{\partial z_{j+1}}{\partial b_j}$$

Dimensions

- Let $z_j \in \mathbb{R}^{n_j}$, consequently $W_j \in \mathbb{R}^{n_{j+1} \times n_j}$, $b_j \in \mathbb{R}^{n_j}$
- Dimensions



- Vector matrix multiplies except for in last step
- Multiplication with tensor $\frac{\partial z_{j+1}}{\partial W_i}$ can be simplified
- Backpropagation variables $\delta_j \in \mathbb{R}^{n_j}$ are vectors (not matrices)

Partial Jacobian $\frac{\partial z_{j+1}}{\partial z_j}$

- Recall relation $z_{j+1} = \sigma_j(W_j z_j + b_j)$ and let $v_j = W_j z_j + b_j$
- Chain rule gives

$$\frac{\partial z_{j+1}}{\partial z_j} = \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial z_j} = \mathbf{diag}(\sigma'_j(v_j)) \frac{\partial v_j}{\partial z_j}$$
$$= \mathbf{diag}(\sigma'_j(W_j z_j + b_j)) W_j$$

where, with abuse of notation (notation overloading)

$$\sigma_j'(u) = \begin{bmatrix} \sigma_j'(u_1) \\ \vdots \\ \sigma_j'(u_{n_{j+1}}) \end{bmatrix}$$

• Reason: $\sigma_j(u) = [\sigma_j(u_1), \dots, \sigma_j(u_{n_{j+1}})]^T$ with $\sigma_j : \mathbb{R}^{n_{j+1}} \to \mathbb{R}^{n_{j+1}}$, gives

$$\frac{d\sigma_j}{du} = \begin{bmatrix} \sigma'_j(u_1) & & \\ & \ddots & \\ & & \sigma'_j(u_{n_{j+1}}) \end{bmatrix} = \operatorname{diag}(\sigma'_j(u))$$

Partial Jacobian $\delta_j^T = \frac{\partial L}{\partial z_j}$

• For any vector $\delta_{j+1} \in \mathbb{R}^{n_{j+1} imes 1}$, we have

$$\begin{split} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} &= \delta_{j+1}^T \operatorname{diag}(\sigma_j'(W_j z_j + b_j))W_j \\ &= (W_j^T (\delta_{j+1}^T \operatorname{diag}(\sigma_j'(W_j z_j + b_j)))^T)^T \\ &= (W_j^T (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)))^T \end{split}$$

where \odot is element-wise (Hadamard) product

• We have defined $\delta_{n+1}^T = \frac{\partial L}{\partial z_{n+1}}$, then

$$\delta_n^T = \frac{\partial L}{\partial z_n} = \delta_{n+1}^T \frac{\partial z_{n+1}}{\partial z_n} = (\underbrace{W_n^T(\delta_{n+1} \odot \sigma_n'(W_n z_n + b_n))}_{\delta_n})^T$$

• Consequently, using induction:

$$\delta_j^T = \frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (\underbrace{W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))}_{\delta_j})^T$$

Information needed to compute $\frac{\partial L}{\partial z_i}$

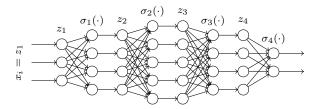
- To compute first Jacobian $\frac{\partial L}{\partial z_n}$, we need $z_n \Rightarrow$ forward pass
- Computing

$$\frac{\partial L}{\partial z_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial z_j} = (W_j^T (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)))^T = \delta_j^T$$

is done using a backward pass

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))$$

• All z_j (or $v_j = W_j z_j + b_j$) need to be stored for backward pass



Partial Jacobian $\frac{\partial L}{\partial W_i}$

• Computed by

$$\frac{\partial L}{\partial W_j} = \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j}$$

where $z_{j+1} = \sigma_j(v_j)$ and $v_j = W_j z_j + b_j$

• Recall $\frac{\partial z_{j+1}}{\partial W_l}$ is 3D tensor, compute Jacobian w.r.t. row $l~(W_j)_l$

$$\begin{split} \delta_{j+1}^{T} \frac{\partial z_{j+1}}{\partial (W_{j})_{l}} &= \delta_{j+1}^{T} \frac{\partial z_{j+1}}{\partial v_{j}} \frac{\partial v_{j}}{\partial (W_{j})_{j}} = \delta_{j+1}^{T} \operatorname{diag}(\sigma_{j}'(v_{j})) \begin{bmatrix} 0\\ \vdots\\ z_{j}^{T}\\ \vdots\\ 0 \end{bmatrix} \\ &= (\delta_{j+1} \odot \sigma_{j}'(W_{j}z_{j} + b_{j}))^{T} \begin{bmatrix} 0\\ \vdots\\ z_{j}^{T}\\ \vdots\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ \vdots\\ (\delta_{j+1} \odot \sigma_{j}'(W_{j}z_{j} + b_{j}))_{j} z_{j}^{T}\\ \vdots\\ 0 \end{bmatrix} \end{split}$$

Partial Jacobian $\frac{\partial L}{\partial W_i}$ cont'd

• Stack Jacobians w.r.t. rows to get full Jacobian:

$$\frac{\partial L}{\partial W_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial W_j} = \begin{bmatrix} \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_1} \\ \vdots \\ \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial (W_j)_{n_{j+1}}} \end{bmatrix} = \begin{bmatrix} (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)_1) z_j^T \\ \vdots \\ (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)_{n_{j+1}}) z_j^T \end{bmatrix}$$
$$= (\delta_{j+1} \odot \sigma_j' (W_j z_j + b_j)) z_j^T$$

for all $j \in \{1, \dots, n-1\}$

- Dimension of result is $n_{j+1} \times n_j$, which matches W_j
- This is used to update W_j weights in algorithm

- Recall $z_{j+1} = \sigma_j(v_j)$ where $v_j = W_j z_j + b_j$
- Computed by

$$\begin{split} \frac{\partial L}{\partial b_j} &= \frac{\partial L}{\partial z_{j+1}} \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \frac{\partial z_{j+1}}{\partial v_j} \frac{\partial v_j}{\partial b_j} = \delta_{j+1}^T \operatorname{diag}(\sigma_j'(v_j)) \\ &= (\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))^T \end{split}$$

Backpropagation summarized

1. Forward pass: Compute and store z_j (or $v_j = W_j z_j + b_j$):

$$z_{j+1} = \sigma_j (W_j z_j + b_j)$$

where $z_1 = x_i$ and $\sigma_n = \mathrm{Id}$

2. Backward pass:

$$\delta_j = W_j^T(\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))$$

with $\delta_{n+1} = (\sigma(z_{n+1}) - y_i)^T$

3. Weight update Jacobians (used in SGD)

$$\frac{\partial L}{\partial W_j} = (\delta_{j+1} \odot \sigma'_j (W_j z_j + b_j)) z_j^T$$
$$\frac{\partial L}{\partial b_j} = (\delta_{j+1} \odot \sigma'_j (W_j x_j + b_j))^T$$

Vanishing and exploding gradient problem

- For some activation functions, gradients can vanish
- For other activation functions, gradients can explode

Vanishing gradient example: Sigmoid

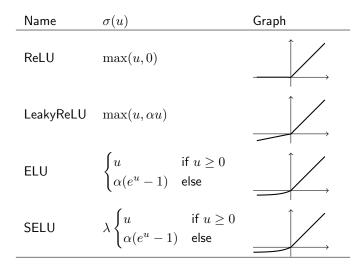
- Assume $||W_j|| \le 1$ for all j and $||\delta_{n+1}|| \le C$
- Maximal derivative of sigmoid (σ) is 0.25
- Then

$$\left\|\frac{\partial L}{\partial z_j}\right\| = \|\delta_j\| = \|W_j^T(\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))\| \le 0.25 \|\delta_{j+1}\| \le 0.25^{n-j+1} \|\delta_{n+1}\| \le 0.25^{n-j+1} C$$

- Hence, as n grows, gradients can become very small for small i
- In general, vanishing gradient if $\sigma' < 1$ everywhere
- Similar reasoning: exploding gradient if $\sigma'>1$ everywhere
- Hence, need $\sigma' = 1$ in large regions

Examples of activation functions

Activation functions that (partly) avoid vanishing gradients



Avoiding exploding gradient – Gradient clipping

- "Clip" (constrain) gradients, e.g.,: $\|W_j\|_2 \leq 1$, $|(W_j)_{lk}| \leq c$
- Sometime enforced:
 - within backpropagation (no gradient computed)
 - after backpropagation using projection (projected gradient)
- Using $||W_j||_2 \le 1$, $||b_j||_2 \le d$ and 1-Lipschitz σ_j controls growth:
 - Forward pass (assuming $\sigma_j(0) = 0$): $z_{j+1} = \sigma_j(W_j z_j + b_j)$

 $\begin{aligned} \|z_{j+1}\|_2 &= \|\sigma_j(W_j z_j + b_j)\|_2 \le \|W_j z_j + b_j\|_2 \le \|W_j z_j\|_2 + \|b_j\|_2 \\ &\le \|z_j\|_2 + d \end{aligned}$

• Backward pass: $\delta_j = W_j^T(\delta_{j+1} \odot \sigma'_j(W_j z_j + b_j))$

 $\begin{aligned} \|\delta_j\|_2 &= \|W_j^T(\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j))\|_2 \le \|W_j^T\|_2 \|\delta_{j+1} \odot \sigma_j'(W_j z_j + b_j)\| \\ &\le \|\delta_{j+1}\|_2 \end{aligned}$

• Initialize weights from normal distr., scale to have $||W_j||_2 = 1$

For large networks

- For large networks $\|W_j\|_2$ may be too expensive to compute
- Approximate, e.g., using (where $W_j \in \mathbb{R}^{n_{j+1} imes n_j}$)
 - Frobenius norm $||W_j||_F \leq 1$:

 $||W_j||_2 \le ||W_j||_F \le 1$

• Element-wise constraints $|(W_j)_{jk}| \leq \frac{1}{\sqrt{n_{j+1}n_j}}$:

$$||W_j||_2^2 \le ||W_j||_F^2 = \sum_{l,k} (W_j)_{lk}^2 \le \sum_{l,k} \frac{1}{\sqrt{n_{j+1}n_j^2}} = \frac{n_{j+1}n_j}{\sqrt{n_{j+1}n_j^2}} = 1$$

- Maybe increase upper bounds since $\|W_j\|_2$ upper approximated
- Initialize weights from normal distr., scale according to above
- Many other heuristics exist