
Deep Learning

Pontus Giselsson

1

Learning goals

• Know what a deep neural network (DNN) is

• Know standard deep learning model structures

• Understand why training problem nonconvex

• Understand relation between DNN and convex supervised learning

• Know about different regularization methods in deep learning

• Know that backpropagation can compute gradient for DNN

• Understand backpropagation and that it is based on chain rule

• Be able to implement backpropagation in simple setting

2

Deep learning

• Can be used both for classification and regression

• Deep learning training problem is of the form

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj

)
− yTu is used for K-class classification

• Difference to previous convex methods: Nonlinear model m(x; θ)
• Deep learning regression generalizes least squares
• DL classification generalizes multiclass logistic regression
• Nonlinear model makes training problem nonconvex

3

Loss function gradient

• Loss functions defined as

L(u, y) =

(∫
σ(v)dv

)
(u)− yTu

where
• σ = I for regression (least squares loss)
• σ is softmax for classification (multiclass logistic regression)

• Formula for gradient in both cases

∇L(·, y)(u) = σ(u)− y

4

Deep learning – Prediction

• Least squares and multiclass logistic losses derived to satisfy

σ(m(x; θ))− y ≈ 0

(gradient equals zero) after training, where
• σ = I for regression
• σ : RK → ∆K is softmax for multiclass classification
• This derivation is independent of model structure

• Predict y for new data x same way as for convex methods
• Regression: m(x; θ) is the prediction for y
• Classification: σ(m(x; θ)) outputs probabilities for class

belonging, predict x in class with largest probability

5

Deep learning – Model

• Nonlinear model of the following form is often used:

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · ·) + bn−1) + bn,

• The σj are nonlinear and called activation functions

• Composition of nonlinear (σj) and affine (Wj(·) + bj) operations

• Each σj function constitutes a hidden layer in the model network

• Graphical representation with three hidden layers

x
i

σ1(·)
σ2(·)

σ3(·)

• Why this structure? (Assumed) universal function approximators

6

Activation functions

• Activation function σj takes as input the output of Wj(·) + bj
• Often a function σ̄j : R→ R is applied to each element

• Example: σj : R3 → R3 is σj(u) =

σ̄j(u1)
σ̄j(u2)
σ̄j(u3)


• We will use notation over-loading and call both functions σj

7

Examples of activation functions

Name σ(u) Graph

Sigmoid 1
1+e−u

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

SELU λ

{
u if u ≥ 0

α(eu − 1) else
8

Examples of affine transformations

• Dense (fully connected): Dense Wj

• Sparse: Sparse Wj

• Convolutional layer (convolution with small pictures)
• Fixed (random) sparsity pattern

• Subsampling: reduce size, Wj fat (smaller output than input)
• max pooling
• average pooling
• 2-norm pooling

9

Learning features

• Used prespecified feature maps (or Kernels) in convex methods

• Deep learning instead learns feature map during training
• Define parameter (weight) dependent feature vector:

φ(x; θ) := σn−1(Wn−1σn−2(· · · (W2σ1(W1x+b1)+b2) · · ·)+bn−1)

• Model becomes m(x; θ) = Wnφ(x; θ) + bn
• Inserted into training problem:

minimize
θ

N∑
i=1

L(Wnφ(xi; θ) + bn, yi)

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

10

Learning features – Graphical representation

• Fixed features gives convex training problems

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i

• Learning features gives nonconvex training problems

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• Output of last activation function is feature vector 11

Design choices

Many design choices in building model to create good features

• Number of layers

• Width of layers

• Types of layers

• Types of activation functions

• Use different model structure (e.g., residual network)

12

Overparameterization

• Assume fully connected network with n layers and N samples

• Assume all layers have p outputs and data xi ∈ Rp

• Number of weights (Wj)lk: p2n and (bj)l: pn

• Assume N ≈ p2 then factor n more weights than samples

• Often overparameterized ⇒ can lead to overfitting

x
i

σ1(·) σ2(·) σ3(·)

13

Reduce overfitting

Reduce number of weights

• Sparse weight tensors (e.g., convolutional layers)

• Subsampling (gives fewer weights deeper in network)

Regularization

• Explicit regularization term in cost function, e.g., Tikhonov

• Data augmentation – more samples, artificial often OK

• Early stopping – stop algorithm before convergence

• Dropouts – next slide

14

Dropouts

• Training problem solved by stochastic gradient method
• Compute gradients on different networks to avoid overfitting
• Take out nodes from network with probability ρ

x
i

σ1(·)
σ2(·)

σ3(·)

• Use scaled ρσ in prediction (on average used ρσ in training)

15

Performance with increasing depth

• Increasing depth can deteriorate performance

• Deep networks may even have worse training errors than shallow

• Intuition: deeper layers bad at approximating identity mapping

16

Residual networks

• Add skip connections between layers
• Instead of network architecture with z1 = xi (see figure):

zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}

use residual architecture

zj+1 = zj + σj(Wjzj + bj) for j ∈ {1, . . . , n− 1}
• Assume σ(0) = 0, Wj = 0, bj = 0 for j = 1, . . . ,m (m < n− 1)
⇒ deeper part of network is identity mapping and does no harm

• Learns variation from identity mapping (residual)

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

17

Graphical representation

For graphical representation, first collapse nodes into single node

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

h1(·)
h2(·) h3(·)

h4(·)

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

18

Graphical representation

• Collapsed network representation

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

z1 z2 z3 z4

• Residual network

h1(·) h2(·) h3(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

• If some hj = 0 gives same performance as shallower network

19

Regularization – Layer Dropouts

• Compute gradient on different networks to avoid overfitting

• In residual networks, layers are approximately identity

• We can drop out layers instead of individual neurons

• Drop layer with probability ρ

• Called stochastic depth residual networks

h1(·) h2(·) h4(·)

x
i
=
z 1

Σz1
Σz2

Σz3
Σz4

20

Training algorithm

• Deep neural networks trained using stochastic gradient descent

• DNN weights are updated via gradients in training

• Gradient of cost is sum of gradients of summands (samples)

• Gradient of each summand computed using backpropagation

21

Backpropagation

• Backpropagation is reverse mode automatic differentiation

• Based on chain-rule

• Backpropagation must be performed per sample

• Our derivation assumes:
• Fully connected layers (W full, if not, set elements in W to 0)
• Activation functions σj(v) = (σj(v1), . . . , σj(vp)) element-wise

(overloading of σj notation)
• Cost L(u, y) =

(∫
σ(v)dv

)
(u)− yTu for some mapping σ

• Weights Wj are matrices, samples xi and responses yi are vectors
• No residual connections

22

Preliminaries – Jacobians

• The Jacobian of a function f : Rn → Rm is given by

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n

• The Jacobian of a function f : Rp×n → R is given by

∂f

∂x
=


∂f
∂x11

· · · ∂f
∂x1n

...
...

...
∂f
∂xp1

· · · ∂f
∂xpn

 ∈ Rp×n

• The Jacobian of a function f : Rp×n → Rm is at layer j given by

[
∂f

∂x

]
:,j,:

=


∂f1
∂xj1

· · · ∂f1
∂xjn

...
...

...
∂fm
∂xj1

· · · ∂fm
∂xjn

 ∈ Rm×n

the full Jacobian is a 3D tensor in Rm×p×n
23

Jacobian vs gradient

• The Jacobian of a function f : Rn → R is given by

∂f

∂x
=
[
∂f
∂x1

· · · ∂f
∂xn

]
• The gradient of a function f : Rn → R is given by

∇f =


∂f
∂x1

...
∂f
∂xn


i.e., transpose of Jacobian for f : Rn → R

• Chain rule holds for Jacobians:

∂f

∂x
=
∂f

∂z

∂z

∂x

24

Jacobian vs gradient – Example

• Consider differentiable f : Rm → R and L ∈ Rm×n
• Compute Jacobian of g = (f ◦ L) using chain rule:

• Rewrite as g(x) = f(z) where z = Lx
• Compute Jacobian by partial Jacobians ∂f

∂z
and ∂z

∂x
:

∂g

∂x
=
∂g

∂z

∂z

∂x
=
∂f

∂z

∂z

∂x
= ∇f(z)TL = ∇f(Lx)TL ∈ R1×n

• Know gradient of (f ◦ L)(x) satisfies

∇(f ◦ L)(x) = LT∇f(Lx) ∈ Rn

which is transpose of Jacobian

25

Backpropagation

• Compute gradient/Jacobian of

L(m(xi; θ), yi)

w.r.t. θ = {(Wj , bj}nj=1, where

m(xi; θ) = Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1xi + b1) + b2) · · ·) + bn−1) + bn

• Rewrite as function with states zj

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u

26

Graphical representation

• Per sample loss function

L(zn+1, yi)

where zj+1 = σj(Wjzj + bj) for j ∈ {1, . . . , n}
and z1 = xi

where σn(u) ≡ u
• Graphical representation

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

27

Backpropagation

• Jacobian of L w.r.t. Wj and bj can be computed as

∂L

∂Wj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zn+1

∂zn+1

∂zn
· · · ∂zj+2

∂zj+1

∂zj+1

∂bj

where we mean derivative w.r.t. first argument in L

• Backpropagation evaluates partial Jacobians as follows

∂L

∂Wj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂Wj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
∂zj+1

∂bj

28

Backpropagation

• Jacobian of L(zn+1, yi) w.r.t. zn+1 (transpose of gradient)

∂L

∂zn+1
= (σ(zn+1)− yi)T

i.e., zn+1 needed ⇒ forward pass: z1 = xi, zj+1 = σj(Wjzj + bj)
• Backward pass, store δj :

∂L

∂zj
=

((
∂L

∂zn+1︸ ︷︷ ︸
δTn+1

∂zn+1

∂zn

)
︸ ︷︷ ︸

δTn

· · · ∂zj+2

∂zj+1

)

︸ ︷︷ ︸
δTj+1

• Compute

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δj+1

∂zj+1

∂Wj

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂bj
= δj+1

∂zj+1

∂bj 29

Dimensions

• Let zj ∈ Rnj , consequently Wj ∈ Rnj+1×nj , bj ∈ Rnj

• Dimensions

∂L

∂Wj
=

((
∂L

∂zn+1︸ ︷︷ ︸
1×nn+1

∂zn+1

∂zn︸ ︷︷ ︸
nn+1×nn︸ ︷︷ ︸

1×nn

)
· · · ∂zj+2

∂zj+1︸ ︷︷ ︸
nj+2×nj+1

︸ ︷︷ ︸
1×nj+1

)
∂zj+1

∂Wj︸ ︷︷ ︸
nj+1×nj+1×nj

︸ ︷︷ ︸
nj+1×nj

∂L

∂bj
=

((
∂L

∂zn+1

∂zn+1

∂zn

)
· · · ∂zj+2

∂zj+1

)
︸ ︷︷ ︸

1×nj+1

∂zj+1

∂bj︸ ︷︷ ︸
nj+1×nj︸ ︷︷ ︸

1×nj

• Vector matrix multiplies except for in last step
• Multiplication with tensor

∂zj+1

∂Wj
can be simplified

• Backpropagation variables δj ∈ Rnj are vectors (not matrices)
30

Partial Jacobian ∂zj+1

∂zj

• Recall relation zj+1 = σj(Wjzj + bj) and let vj = Wjzj + bj
• Chain rule gives

∂zj+1

∂zj
=
∂zj+1

∂vj

∂vj
∂zj

= diag(σ′j(vj))
∂vj
∂zj

= diag(σ′j(Wjzj + bj))Wj

where, with abuse of notation (notation overloading)

σ′j(u) =

 σ′j(u1)
...

σ′j(unj+1
)


• Reason: σj(u) = [σj(u1), . . . , σj(unj+1

)]T with
σj : Rnj+1 → Rnj+1 , gives

dσj
du

=

σ
′
j(u1)

. . .

σ′j(unj+1
)

 = diag(σ′j(u))

31

Partial Jacobian δTj = ∂L
∂zj

• For any vector δj+1 ∈ Rnj+1×1, we have

δTj+1

∂zj+1

∂zj
= δTj+1 diag(σ′j(Wjzj + bj))Wj

= (WT
j (δTj+1 diag(σ′j(Wjzj + bj)))

T)T

= (WT
j (δj+1 � σ′j(Wjzj + bj)))

T

where � is element-wise (Hadamard) product
• We have defined δTn+1 = ∂L

∂zn+1
, then

δTn =
∂L

∂zn
= δTn+1

∂zn+1

∂zn
= (WT

n (δn+1 � σ′n(Wnzn + bn))︸ ︷︷ ︸
δn

)T

• Consequently, using induction:

δTj =
∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj))︸ ︷︷ ︸
δj

)T

32

Information needed to compute ∂L
∂zj

• To compute first Jacobian ∂L
∂zn

, we need zn ⇒ forward pass
• Computing

∂L

∂zj
= δTj+1

∂zj+1

∂zj
= (WT

j (δj+1 � σ′j(Wjzj + bj)))
T = δTj

is done using a backward pass

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

• All zj (or vj = Wjzj + bj) need to be stored for backward pass

x
i
=
z 1

z1
σ1(·) z2

σ2(·) z3
σ3(·) z4

σ4(·)

33

Partial Jacobian ∂L
∂Wj

• Computed by

∂L

∂Wj
=

∂L

∂zj+1

∂zj+1

∂Wj
= δTj+1

∂zj+1

∂Wj

where zj+1 = σj(vj) and vj = Wjzj + bj
• Recall

∂zj+1

∂Wl
is 3D tensor, compute Jacobian w.r.t. row l (Wj)l

δTj+1
∂zj+1

∂(Wj)l
= δTj+1

∂zj+1

∂vj

∂vj
∂(Wj)j

= δTj+1 diag(σ′j(vj))



0
...
zTj
...
0



= (δj+1 � σ′j(Wjzj + bj))
T



0
...
zTj
...
0

 =



0
...

(δj+1 � σ′j(Wjzj + bj))jz
T
j

...
0


34

Partial Jacobian ∂L
∂Wj

cont’d

• Stack Jacobians w.r.t. rows to get full Jacobian:

∂L

∂Wj
= δTj+1

∂zj+1

∂Wj
=


δTj+1

∂zj+1

∂(Wj)1
...

δTj+1
∂zj+1

∂(Wj)nj+1

 =

 (δj+1 � σ′j(Wjzj + bj)1)zTj
...

(δj+1 � σ′j(Wjzj + bj)nj+1
)zTj


= (δj+1 � σ′j(Wjzj + bj))z

T
j

for all j ∈ {1, . . . , n− 1}

• Dimension of result is nj+1 × nj , which matches Wj

• This is used to update Wj weights in algorithm

35

Partial Jacobian ∂L
∂bj

• Recall zj+1 = σj(vj) where vj = Wjzj + bj
• Computed by

∂L

∂bj
=

∂L

∂zj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1

∂zj+1

∂vj

∂vj
∂bj

= δTj+1 diag(σ′j(vj))

= (δj+1 � σ′j(Wjzj + bj))
T

36

Backpropagation summarized

1. Forward pass: Compute and store zj (or vj = Wjzj + bj):

zj+1 = σj(Wjzj + bj)

where z1 = xi and σn = Id

2. Backward pass:

δj = WT
j (δj+1 � σ′j(Wjzj + bj))

with δn+1 = (σ(zn+1)− yi)T

3. Weight update Jacobians (used in SGD)

∂L

∂Wj
= (δj+1 � σ′j(Wjzj + bj))z

T
j

∂L

∂bj
= (δj+1 � σ′j(Wjxj + bj))

T

37

Vanishing and exploding gradient problem

• For some activation functions, gradients can vanish

• For other activation functions, gradients can explode

38

Vanishing gradient example: Sigmoid

• Assume ‖Wj‖ ≤ 1 for all j and ‖δn+1‖ ≤ C
• Maximal derivative of sigmoid (σ) is 0.25

• Then∥∥∥∥ ∂L∂zj
∥∥∥∥ = ‖δj‖ = ‖WT

j (δj+1 � σ′j(Wjzj + bj))‖ ≤ 0.25‖δj+1‖

≤ 0.25n−j+1‖δn+1‖ ≤ 0.25n−j+1C

• Hence, as n grows, gradients can become very small for small i

• In general, vanishing gradient if σ′ < 1 everywhere

• Similar reasoning: exploding gradient if σ′ > 1 everywhere

• Hence, need σ′ = 1 in large regions

39

Examples of activation functions

Activation functions that (partly) avoid vanishing gradients

Name σ(u) Graph

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

SELU λ

{
u if u ≥ 0

α(eu − 1) else

40

Avoiding exploding gradient – Gradient clipping

• “Clip” (constrain) gradients, e.g.,: ‖Wj‖2 ≤ 1, |(Wj)lk| ≤ c
• Sometime enforced:

• within backpropagation (no gradient computed)
• after backpropagation using projection (projected gradient)

• Using ‖Wj‖2 ≤ 1, ‖bj‖2 ≤ d and 1-Lipschitz σj controls growth:
• Forward pass (assuming σj(0) = 0): zj+1 = σj(Wjzj + bj)

‖zj+1‖2 = ‖σj(Wjzj + bj)‖2 ≤ ‖Wjzj + bj‖2 ≤ ‖Wjzj‖2 + ‖bj‖2
≤ ‖zj‖2 + d

• Backward pass: δj = WT
j (δj+1 � σ′j(Wjzj + bj))

‖δj‖2 = ‖WT
j (δj+1 � σ′j(Wjzj + bj))‖2 ≤ ‖WT

j ‖2‖δj+1 � σ′j(Wjzj + bj)‖2
≤ ‖δj+1‖2

• Initialize weights from normal distr., scale to have ‖Wj‖2 = 1

41

For large networks

• For large networks ‖Wj‖2 may be too expensive to compute

• Approximate, e.g., using (where Wj ∈ Rnj+1×nj)
• Frobenius norm ‖Wj‖F ≤ 1:

‖Wj‖2 ≤ ‖Wj‖F ≤ 1

• Element-wise constraints |(Wj)jk| ≤ 1√
nj+1nj

:

‖Wj‖22 ≤ ‖Wj‖2F =
∑
l,k

(Wj)
2
lk ≤

∑
l,k

1√
nj+1nj

2 =
nj+1nj√
nj+1nj

2 = 1

• Maybe increase upper bounds since ‖Wj‖2 upper approximated

• Initialize weights from normal distr., scale according to above

• Many other heuristics exist

42

