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Learning goals

® Know the difference between first and second order methods
® Know the proximal gradient method:

® Know that it is (sometimes) a majorization-minimization method
Understand its relation to the descent lemma
Understand the conditions for convergence and convergence proof
Understand what it converges to in nonconvex and convex settings
Able to show that the fixed-points solves the problem if convex



Optimization algorithm overview

Algorithms can roughly be divided into the following classes:

® Second-order methods

® Quasi second-order methods

® First-order methods

® Stochastic and coordinate-wise first-order methods



Second-order methods

Solves problems using second-order (Hessian) information
® Requires smooth (twice continuously differentiable) functions
® Constraints can be incorporated via barrier functions

® Examples:

® Newton's method to minimize smooth function f:

Thy1 = ok — (V2 (1) VI (k)

® [nterior points methods for smooth constrained problems:

® Use sequence of smooth constraint barrier functions

® For each barrier, solve smooth problem using Newton's method

® Make barriers increasingly well approximate constraint set

® (Can be applied to directly solve primal-dual optimality condition)

® Computational backbone: solving linear systems O(n?)

® Often restricted to small to medium scale problems



Quasi second-order methods

Estimates second-order information from first-order
Solves problems using estimated second-order information
Requires smooth (twice continuously differentiable) functions

Quasi-Newton method for smooth f

Try1 = Tk — BeV f(21)

where By, is:
® estimate of Hessian inverse (not Hessian to avoid later inverse)
® cheaply computed from gradient information

Computational backbone: forming Bj and matrix multiplication

Can solve large-scale smooth problems



First-order methods

Solves problems using first-order (sub-gradient) information
® Computational primitives: gradients and proximal operators
® Use gradient if function differentiable, prox if nondifferentiable

Examples for solving miniwmize f(x) + g(x)
® Proximal gradient method (requires smooth f since gradient used)
Trt1 = prox. (zr — YV f(xk))
® Douglas-Rachford splitting (no smoothness requirement)
Zhtl = 22k + %(Qproxﬂ/g —I)(2prox, ; — I)zy

and zj = prox, ;(zx) converges to solution
® [teration often cheaper than second-order if function split wisely
® (Can solve large scale problems



Stochastic and coordinate-wise first-order methods

® Sometimes first-order methods computationally too expensive
® Stochastic gradient methods:
® Use stochastic approximation of gradient
® For finite sum problems, cheaply computed approximation exists
® Coordinate-wise updates:
® Update only one (or block of) coordinates in every iteration:
® via direct minimization
® via proximal gradient step
® Can update coordinates in cyclic fashion
® Stronger convergence results if random selection of block
® Efficiently evaluated, e.g., if one function separable

® (Can solve huge scale problems



Our focus

Proximal gradient method, stochastic and coordinate-wise versions

Lectures will cover:

® Proximal gradient method
® Coordinate and stochastic proximal gradient method
® |ine search, acceleration, and scaling

® Newton prox method, early termination, quasi-Newton



Notation

® Will go back to optimization variable notation: z,vy, z

® For learning examples, use machine learning notation: 6 = (w, b)
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Majorization Minimization

® Proximal gradient is (often) majorization minimization algorithm
® Majorization minimization for solving minimize f(z):
xr
® |et iterate be zy, B
® Find at xx majorizing function f, such that

foo = f  and  fo(ar) = f(zr)
® Minimize f (easier than minimizing f) to get next iterate
Tr1 = argmin fo, ()
x
® Majorizer should ensure z; 1 = xi if and only if z; minimizes f
® Guarantees function decrease (maybe not x; — x € argmin f)
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Composite optimization problems

We will consider composite optimization problems of the form
minimize f(x) + g(x)
xX

where

® f:R"™ — R is S-smooth (not necessarily convex)
® g:R"” - RU{oco} is closed convex
® Solution set is nonempty, i.e., a solution exists

Model includes minimization problems of the form

minixmize f(Lz) + g(x)

with differentiable f : R™ — R and L € R™*"™ where
® gradient V(f o L)(z) = LYV f(Lz)
® foLis fB||L||3-smooth for 3-smooth £, (||L||2 is operator norm)

The latter is form of most supervised training problems
The former is used here since lighter notation
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Gradient method

Consider minimize 8-smooth f : R™ = R (i.e., g = 0)

Recall that -smoothness implies that

f@) < f@)+ V@) " (y—a) + 5y — I3

for all z,y € R™, i.e., r.h.s. is majorizing function for fixed x

Majorization minimization with majorizer if ;. € [¢, 371], € > 0:
241 = avgmin (f(z) + V(@) (y = 20) + 5 lly — wal3)
y
= argmin 51— |ly — zx + 7V f ()13
Y

=z — V()

Gives gradient method, 7 (bounded above by 371) is step length
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Longer steps

® The requirement 7, € [e, %] guarantees a majorizer is minimized

® Analysis will say: Possible to have v; € [e,% — €
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Proximal gradient method

® Consider minimize f(z) + g(x) where

® fis B-smooth f:R™ — R (not necessarily convex)
® g is closed convex

® Due to B-smoothness of f, we have

F@) +9) < f@)+ Vi) (y—2)+ Elly — 2/3 + 9(»)

for all z,y € R"™, i.e., r.h.s. is majorizing function for fixed x
Y I g

® Majorization minimization with majorizer if 4 € [¢, 371], € > 0:

Tit1 = argmin (f(xk) +V )y —2) + g lly — 2l + g(y))
= argmin (g(y) + 74y — (@ — V£ (@0)]3)

Y
= prox,, o (zr — WV f(zk))

gives proximal gradient method
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Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)
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Proximal gradient — Special cases

® Proximal gradient method:

® solves minimize(f(x) + g(z))

® iteration: kaH = prox,, ,(vx — 7V f(2k))
® Proximal gradient method with g = 0:

® solves minizmize(f(x))

® prox,, ,(z) = argmin_ (0 + %Hx —z|3) =2

® jteration: xp41 = pI"O)QWQ(CC;C — % Vf(zk)) =2k — %V f(zk)
® reduces to gradient method

® Proximal gradient method with f = 0:
® solves minimize(g(x))
® Vf(x)=0

iteration: xpy1 = plroxﬂ/kg(ac;c — vV f(zk)) = prokag(:ck)
® reduces to proximal point method (which is not very useful)
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Proximal gradient — Optimality condition

® Proximal gradient iteration:

Tp1 = prox,, o(zx — 1V f(2K))

= argmin(g(y) + g ly — (@ — WV f(2x))|3)
Yy

h(y)

where x1 is unique due to strong convexity of i

® Fermat’s rule (and since CQ holds) gives optimality condition:

0 € 0g(xpy1) + Oh(ps1)
= 0g(zrr1) + 75 (@rs1 — (@ — WV (2r)))
= 0g(zg11) + Vf(zk) + Vk_l(l”k-u — xy)

since h differentiable

® A consequence: Og(xkt1) is nonempty
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Solving composite problem

To solve minimize f(z) 4+ g(x), an algorithm must:
xr
® have fixed-points (output equals input) that solve problem
® converge to a fixed-point
Proximal gradient method:

® for convex problems, it satisfies both requirements

® for nonconvex, weaker (but still useful) results hold
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Proximal gradient — Fixed-point set

® Denote Tpq := prox., (I —Vf), gives algorithm x) 1 = Tpqok

® Proximal gradient fixed-point set definition
fixTpe ={z: 2 =T3gz} ={z: 2 = prox.,(z — vV f(x))}

i.e., set of points for which z;1 =z,

20



Proximal gradient — Fixed-point characterization

Let v > 0. Then Z € fixT{, if and only if 0 € dg(z) + V f(Z). ‘

® Proof: by proximal gradient step optimality condition

T € fixTpg & T = prox, (T — YV f(2))
& 0€99(@) +v (7~ (T -7V ()
& 0€0g(z)+ Vi)

® Consequence: fixed-point set same for all v > 0

® We call inclusion 0 € dg(z) + V f(Z) fixed-point characterization
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Meaning of fixed-point characterization

® What does fixed-point characterization 0 € dg(z) + V f(Z) mean?
® For convex differentiable f, subdifferential 9f(x) = {V f(x)} and

0€ df(z)+ dg(z) = O(f + 9)(Z)

(subdifferential sum rule holds), i.e., fixed-points solve problem
® For nonconvex differentiable f, we might have df(z) =0
® Fixed-point are not in general global solutions

® Points Z that satisfy 0 € dg(Z) + V f(Z) are called critical points
® |f g =0, the condition is Vf(Z) =0, i.e., a stationary point

® Quality of fixed-points differs

® How about convergence to fixed-point?
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Assumptions for convergence — Nonconvex case

® Proximal gradient method 41 = proxwg(xk — vV f(zr))
® Assumptions:

() f:R™ — R is continuously differentiable (not necessarily convex)
(i) For every x) and xj41 there exists 8 € 7,7 '], n € (0,1):

F@ri1) < flaw) + V@) (@ri — o) + L l|lze — 2rpall

where f) is a sort of local Lipschitz constant
(#i7) g :R™ — RU {oo} is closed convex
(v) A minimizer exists (and p* = min, (f(z) + g(z)) is optimal value)
(v) Algorithm parameters v, € [e, % — €], where € > 0

® Assumption on f satisfied with 8 = 8 if f S-smooth
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A basic inequality

Using

(a) Upper bound assumption on f, i.e., Assumption (i)
(b) Prox optimality condition: There exists sxy1 € 9g(zp11)

0=sp41+ ’7];1(xk+1 - (xk - ’Yka(CUk)))

(¢) Subgradient definition: g(xx) > g(zrt1) + s 1 (Tk — Try1)

f(@rs1) + 9(xps1)
(a)
< flan) + V(@) (@ren — 2x) + 2 llzper — 213 + g(zns1)

()

< flar) + V@) (@rg — 2x) + Zllorrn — zell3 + g(2n)
— Sty (@h — Tp1)

b

@ flxr) + V)T (g — 1) + %HMH — a3+ g(z)
+ 95 @ha1 — (w6 — V(@) (@) — Ths1)

= flor) + g(zr) — (" = Z)|wper — zall3
24



Function value decrease

® \What conclusions can we draw from

F@rs1) + g(@ns) < Flxn) + g(zn) — (" = 2 lwesr — 2ll3

® The requirement on 4 € [e, ﬂk — €
® since (1, € [, "] there is € > 0 such that [e, % — €] nonempty
® therefore § > 0 exists such that

Wl EF46ST] = =260

which implies that function value decreases:
F@ren) + g(xrer) < flaw) + g(zr) = Ollzren — zell

® Not very useful!
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Fixed-point residual converges

® Rearrange inequality from previous slide:

Sllzrsr — zell3 < flan) + 9(@r) — (f (@rt1) + 9(Ths1))

® Telescope summation gives for all n € N:

52 241 — x5 < Z (@) + g(zr) — (f(@rs1) + 9(Th41)))

??‘

( V) +9(x1) = (f(@ns1) + 9(2nt1))

f
f(@1) + g(xr) —p" < o0

IA

where p* = min, (f(x) + g(x)) and < oo since x; € domg
® Since § > 0, this implies:

[prox, ¢ (zx — YV f(zk)) — zkll2 = [[Tk41 — zk[l2 = 0
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Residual convergence — Implication

What does [prox., ,(zr — 7%V f(2x)) — x|l — 0 mean and imply?

® That fixed-point equation will be satisfied in the limit
® By prox-grad optimality condition:

Og(zks1) + V(xk) 37y, 2k — 2pg1) = 0
as k — oo (since 7, > ¢, ie., 0 < ’yk_l < e 1) or equivalently

09(xps1) + Vf(@rt1) 3 v (@ — Tg1) + VI (@r1) — Vf(zr) =0

ug

where u;, — 0 is concluded by continuity of V f, implications:

® Fixed-point characterization satisfied in the limit
® Nonconvex f: Critical point definition satisfied in the limit
® Convex f: Global optimality condition satisfied in the limit

® However, does not imply that (xj) converges to a fixed-point
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Sequence convergence results

Nonconvex f:
® convergent (sub)sequences (if exist), converge to fixed-point
Convex f:

® sequence converges to fixed-point, hence to (global) solution
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Sequence convergence — Convex case

Assume, in addition to previous assumptions, that f is convex

The following result can be shown to hold

A sequence (z)ren converges to a point in fixTp if:
(i) [lprox, (zx — YV f(xx)) — k|2 — 0 as k — oo
(ii) (|lzx — 2|l2)ken converges for all z € fixTH

Condition (i) already shown to hold for prox-grad iteration
Condition (ii) holds for convex problems (but not for nonconvex)

A proof can be found in note on course webpage
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Summary

Nonconvex f:

® Fixed-points Z such that 0 € dg(Z) + V f(Z) are critical points
® Generated sequence uy — 0 satisfies ux, € dg(zg41) + Vf(zp41)

® If convergent (sub)sequence exists, converges to fixed-point
Convex f:

® Fixed-points Z such that 0 € d¢g(Z) + V f(Z) are global solutions
® Generated sequence ug — 0 satisfies ux, € 9g(zk+1) + Vf(Tr41)
® Sequence converges to fixed-point
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Choose ) and

e Convergence based on assumption that (5, known that satisfies
F@rs1) < Flow) + V) (@1 — 1) + L lloe — 2|3

call this descent condition (DC)
e If fis B-smooth, then Bx = B is valid choice since

fly) < f@) + V@) (y = 2) + §lle —yl3

for all z,y, select 7y, € [¢, 2 — ]
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Choose [, and v, — Backtracking

® Backtracking, choose § > 1, S € [n,77!] and loop:
1. choose i € [e, 5 — €]
2. compute wx41 = prox.,, ,(zx — vV f(2K))
3. if descent condition (DC) satisfied
break
else
set B < 6Bk and go to 1
end
® Backtracking will terminate within finite number of backtracks if:
® f smooth (Vf Lipschitz), constant unknown: initialize 8x = Br-1
® Vf locally Lipschitz and sequence bounded: initialize 8 =
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When is problem solved?

¢ Consider minimize(f(x) + g(x))
® Apply proximal gradient method zj41 = prox,, ,(zx — vV (7))

® Algorithm sequence satisfies

0g(zp41) + VF(@ri1) D7 @k — Tpy1) + VI (@p41) — V(@) = 0

Uk

is |Juk|| small a good measure of being close to fixed-point?
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When is problem solved?

Let 6 > 0 and solve equivalent problem minimize(d f(x) + dg(z)):

® Denote algorithm parameter 5 = %
® Algorithm satisfies:
Tpy1 = Prox,,  sq(Tr — Y6,k VOf(zr)) = prox,, o (zx — WV f(2k))
i.e., the same algorithm as before
® However, u; in this setting satisfies
us g = Vop (T — Tpi1) + VO (@p11) — VO ()
= 6(75 (e — pp1) + Vf(@rp1) — V(@)

= 5uk

i.e., same algorithm but different optimality measure

® Optimality measure should be scaling invariant
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Stopping condition

® For 8 smooth f, use scaled condition B~ 1uy

B ug = B (v @k — Tg1) + Vi (Trg1) — V(an)

which is scale invariant

® Stop algorithm when 31wy is small enough
® absolute stopping conditions with small e;ps > 0
d /371||UEU2 < €abs
® 87 (v Hlzk — zpgallz + IVF(@r) = VF(@rg1)ll2) < eabs
® relative stopping condition with small €1, € > 0:
—1 _llull
* g szﬁ+€ < €rel

o -1 —1lz—zpqi1llz | IVF(@R)—Vi(Tri1)ll2
BN Taalate T VFGmlate

® Problem considered solved to optimality if, say, €.ps < 10—6

< €rel

® Sometimes want to stop algorithm early, a form of regularization

® Other stopping conditions can be used, should be scaling invariant
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Example — SVM

® (Classification problem from SVM lecture, SVM with
® polynomial features of degree 2
® regularization parameter A = 0.00001

36



Example — Fixed-point residual

® Plots 57 luklla = 87 v (k= Tig1) + Vf (@ri1) = V(1) 2
® Shows residual up to 20'000 iterations
® Quite many iterations needed to converge

10°
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Example — SVM higher degree polynomial

® (Classification problem from SVM lecture, SVM with
® polynomial features of degree 6
® regularization parameter A = 0.00001
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Example — Fixed-point residual

® Plots B~ |ugll2 = B v M@k — 2t1) + VF(@rs1) — Vi (2r)])2
® Shows residual up to 200'000 iterations (10x more than before)

® Many iterations needed
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Applying proximal gradient to primal problems

Problem minimize f(z) + g(z):

® Assumptions:
® f smooth
® g closed convex and prox friendly*

® Algorithm: xp 41 = prox,, ,(zr — WV f(zk))

Problem minimize f(Lz) + g(x):

® Assumptions:
® f smooth (implies f o L smooth)
® g closed convex and prox friendly1
e Gradient V(f o L)(x) = LTV f(Lx)

® Algorithm: zj41 = prox,, ,(z) — LTV f(Lxy))

1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable
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Applying proximal gradient to dual problem

Dual problem minimize f*(v) + ¢*(—LTv):

® Assumptions:

® f closed convex and prox friendly
® g strongly convex (which implies g* o —L” smooth)

Gradient: V(g* o —LT)(v) = —LVg*(—L"v)

Prox (Moreau): prox,, s (v) =v — %prOXkalf(’Yk_lV)

Algorithm:

V41 = ProxX,, s. (vk = V(9" o —LT)(Vk))
= (I — 'ykproxn/kflf(ykfl o )(vk + 1 LVg* (—L )

Problem must be convex to have dual!

Enough to know prox of f
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Primal recovery

® Fermat's rule for dual proximal gradient method

0€0f* (V1) + V(9" o —L") () + 75, ' (Va1 — i)
=0f* (Uks1) — LV (g" (=L vi) + v, " (Vg1 — i)

® Now, let 7, = Vg*(—L%1y), then

0c Vg*(fLTyk.) — Xk
Of*(Vks1) — Loy + 5, (V41 — i)

and (zy, Vi) satisfies optimality condition when vg 1 — v — 0
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What problems cannot be solved (efficiently)?

Problem minimize f(x) + g(x)

® Assumptions: f and g convex and nonsmooth

® No term differentiable, another method must be used:
® Subgradient method
® Douglas-Rachford splitting
® Primal-dual methods

Problem minimize f(x) + g(Lx)
xr
® Assumptions:
® f smooth

® g nonsmooth convex
® [ arbitrary structured matrix

® Can apply proximal gradient method, but
PTroX., (gor)(2) = argfling(L:v) + o5 llz = 2[13)

often not “prox friendly”, i.e., it is expensive to evaluate
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