
Proximal Gradient Method

Pontus Giselsson

1

Learning goals

• Know the difference between first and second order methods

• Know the proximal gradient method:
• Know that it is (sometimes) a majorization-minimization method
• Understand its relation to the descent lemma
• Understand the conditions for convergence and convergence proof
• Understand what it converges to in nonconvex and convex settings
• Able to show that the fixed-points solves the problem if convex

2

Optimization algorithm overview

Algorithms can roughly be divided into the following classes:

• Second-order methods

• Quasi second-order methods

• First-order methods

• Stochastic and coordinate-wise first-order methods

3

Second-order methods

• Solves problems using second-order (Hessian) information

• Requires smooth (twice continuously differentiable) functions

• Constraints can be incorporated via barrier functions

• Examples:
• Newton’s method to minimize smooth function f :

xk+1 = xk − γk(∇2f(xk))−1∇f(xk)

• Interior points methods for smooth constrained problems:
• Use sequence of smooth constraint barrier functions
• For each barrier, solve smooth problem using Newton’s method
• Make barriers increasingly well approximate constraint set
• (Can be applied to directly solve primal-dual optimality condition)

• Computational backbone: solving linear systems O(n3)

• Often restricted to small to medium scale problems

4

Quasi second-order methods

• Estimates second-order information from first-order

• Solves problems using estimated second-order information

• Requires smooth (twice continuously differentiable) functions

• Quasi-Newton method for smooth f

xk+1 = xk − γkBk∇f(xk)

where Bk is:
• estimate of Hessian inverse (not Hessian to avoid later inverse)
• cheaply computed from gradient information

• Computational backbone: forming Bk and matrix multiplication

• Can solve large-scale smooth problems

5

First-order methods

• Solves problems using first-order (sub-gradient) information

• Computational primitives: gradients and proximal operators

• Use gradient if function differentiable, prox if nondifferentiable

• Examples for solving minimize
x

f(x) + g(x)

• Proximal gradient method (requires smooth f since gradient used)

xk+1 = proxγg(xk − γ∇f(xk))

• Douglas-Rachford splitting (no smoothness requirement)

zk+1 = 1
2
zk + 1

2
(2proxγg − I)(2proxγf − I)zk

and xk = proxγf (zk) converges to solution

• Iteration often cheaper than second-order if function split wisely

• Can solve large scale problems

6

Stochastic and coordinate-wise first-order methods

• Sometimes first-order methods computationally too expensive

• Stochastic gradient methods:
• Use stochastic approximation of gradient
• For finite sum problems, cheaply computed approximation exists

• Coordinate-wise updates:
• Update only one (or block of) coordinates in every iteration:

• via direct minimization
• via proximal gradient step

• Can update coordinates in cyclic fashion
• Stronger convergence results if random selection of block
• Efficiently evaluated, e.g., if one function separable

• Can solve huge scale problems

7

Our focus

Proximal gradient method, stochastic and coordinate-wise versions

Lectures will cover:

• Proximal gradient method

• Coordinate and stochastic proximal gradient method

• Line search, acceleration, and scaling

• Newton prox method, early termination, quasi-Newton

8

Notation

• Will go back to optimization variable notation: x, y, z

• For learning examples, use machine learning notation: θ = (w, b)

9

Proximal Gradient Method

10

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3x4x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3x4x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2

x3x4x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3

x4x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3x4

x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3x4x5

11

Majorization Minimization

• Proximal gradient is (often) majorization minimization algorithm
• Majorization minimization for solving minimize

x
f(x):

• Let iterate be xk
• Find at xk majorizing function f̄xk such that

f̄xk ≥ f and f̄xk (xk) = f(xk)

• Minimize f̄ (easier than minimizing f) to get next iterate

xk+1 = argmin
x

f̄xk (x)

• Majorizer should ensure xk+1 = xk if and only if xk minimizes f
• Guarantees function decrease (maybe not xk → x ∈ argmin f)

x1

x2
x3x4x5

11

Composite optimization problems

• We will consider composite optimization problems of the form

minimize
x

f(x) + g(x)

where
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex
• Solution set is nonempty, i.e., a solution exists

• Model includes minimization problems of the form

minimize
x

f(Lx) + g(x)

with differentiable f : Rm → R and L ∈ Rm×n where
• gradient ∇(f ◦ L)(x) = LT∇f(Lx)
• f ◦ L is β‖L‖22-smooth for β-smooth f , (‖L‖2 is operator norm)

• The latter is form of most supervised training problems

• The former is used here since lighter notation

12

Gradient method

• Consider minimize β-smooth f : Rn → R (i.e., g = 0)

• Recall that β-smoothness implies that

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

for all x, y ∈ Rn, i.e., r.h.s. is majorizing function for fixed x

• Majorization minimization with majorizer if γk ∈ [ε, β−1], ε > 0:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − xk) + 1

2γk
‖y − xk‖22

)
= argmin

y

1
2γk
‖y − xk + γk∇f(xk)‖22

= xk − γk∇f(xk)

• Gives gradient method, γk (bounded above by β−1) is step length

13

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3x4 x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3x4 x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2

x3x4 x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3

x4 x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3x4

x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3x4 x5

14

Longer steps

• The requirement γk ∈ [ε, 1
β] guarantees a majorizer is minimized

• Analysis will say: Possible to have γk ∈ [ε, 2
β − ε]:

x1

x2
x3x4 x5

14

Proximal gradient method

• Consider minimize
x

f(x) + g(x) where

• f is β-smooth f : Rn → R (not necessarily convex)
• g is closed convex

• Due to β-smoothness of f , we have

f(y) + g(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2 + g(y)

for all x, y ∈ Rn, i.e., r.h.s. is majorizing function for fixed x

• Majorization minimization with majorizer if γk ∈ [ε, β−1], ε > 0:

xk+1 = argmin
y

(
f(xk) +∇f(xk)T (y − x) + 1

2γk
‖y − xk‖22 + g(y)

)
= argmin

y

(
g(y) + 1

2γk
‖y − (xk − γk∇f(xk))‖22

)
= proxγkg(xk − γk∇f(xk))

gives proximal gradient method

15

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3
x4x5

16

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3
x4x5

16

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3

x4x5

16

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3
x4

x5

16

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3
x4x5

16

Proximal gradient – Example

• Proximal gradient iterations for problem minimize
x

1
2 (x− a)2 + |x|

• f(x) = 1
2 (x− a)2 is smooth term and g(x) = |x| is nonsmooth

• Iteration: xk+1 = proxγg(xk − γ∇f(xk))

• Note: convergence in finite number of iterations (not always)

x1

x2

x3
x4x5

16

Proximal gradient – Special cases

• Proximal gradient method:
• solves minimize

x
(f(x) + g(x))

• iteration: xk+1 = proxγkg(xk − γk∇f(xk))

• Proximal gradient method with g = 0:
• solves minimize

x
(f(x))

• proxγkg(z) = argminx(0 + 1
2γ
‖x− z‖22) = z

• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = xk − γk∇f(xk)
• reduces to gradient method

• Proximal gradient method with f = 0:
• solves minimize

x
(g(x))

• ∇f(x) = 0
• iteration: xk+1 = proxγkg(xk − γk∇f(xk)) = proxγkg(xk)
• reduces to proximal point method (which is not very useful)

17

Proximal gradient – Optimality condition

• Proximal gradient iteration:

xk+1 = proxγkg(xk − γk∇f(xk))

= argmin
y

(g(y) + 1
2γk
‖y − (xk − γk∇f(xk))‖22︸ ︷︷ ︸

h(y)

)

where xk+1 is unique due to strong convexity of h

• Fermat’s rule (and since CQ holds) gives optimality condition:

0 ∈ ∂g(xk+1) + ∂h(xk+1)

= ∂g(xk+1) + γ−1k (xk+1 − (xk − γk∇f(xk)))

= ∂g(xk+1) +∇f(xk) + γ−1k (xk+1 − xk)

since h differentiable

• A consequence: ∂g(xk+1) is nonempty

18

Solving composite problem

To solve minimize
x

f(x) + g(x), an algorithm must:

• have fixed-points (output equals input) that solve problem

• converge to a fixed-point

Proximal gradient method:

• for convex problems, it satisfies both requirements

• for nonconvex, weaker (but still useful) results hold

19

Proximal gradient – Fixed-point set

• Denote T γPG := proxγg(I − γ∇f), gives algorithm xk+1 = T γPGxk
• Proximal gradient fixed-point set definition

fixT γPG = {x : x = T γPGx} = {x : x = proxγg(x− γ∇f(x))}

i.e., set of points for which xk+1 = xk

20

Proximal gradient – Fixed-point characterization

Let γ > 0. Then x̄ ∈ fixT γPG if and only if 0 ∈ ∂g(x̄) +∇f(x̄).

• Proof: by proximal gradient step optimality condition

x̄ ∈ fixT γPG ⇔ x̄ = proxγg(x̄− γ∇f(x̄))

⇔ 0 ∈ ∂g(x̄) + γ−1(x̄− (x̄− γ∇f(x̄)))

⇔ 0 ∈ ∂g(x̄) +∇f(x̄)

• Consequence: fixed-point set same for all γ > 0

• We call inclusion 0 ∈ ∂g(x̄) +∇f(x̄) fixed-point characterization

21

Meaning of fixed-point characterization

• What does fixed-point characterization 0 ∈ ∂g(x̄) +∇f(x̄) mean?

• For convex differentiable f , subdifferential ∂f(x) = {∇f(x)} and

0 ∈ ∂f(x̄) + ∂g(x̄) = ∂(f + g)(x̄)

(subdifferential sum rule holds), i.e., fixed-points solve problem

• For nonconvex differentiable f , we might have ∂f(x̄) = ∅
• Fixed-point are not in general global solutions
• Points x̄ that satisfy 0 ∈ ∂g(x̄) +∇f(x̄) are called critical points
• If g = 0, the condition is ∇f(x̄) = 0, i.e., a stationary point

• Quality of fixed-points differs

• How about convergence to fixed-point?

22

Assumptions for convergence – Nonconvex case

• Proximal gradient method xk+1 = proxγkg(xk − γk∇f(xk))

• Assumptions:

(i) f : Rn → R is continuously differentiable (not necessarily convex)
(ii) For every xk and xk+1 there exists βk ∈ [η, η−1], η ∈ (0, 1):

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2
‖xk − xk+1‖22

where βk is a sort of local Lipschitz constant
(iii) g : Rn → R ∪ {∞} is closed convex
(iv) A minimizer exists (and p? = minx(f(x) + g(x)) is optimal value)
(v) Algorithm parameters γk ∈ [ε, 2

βk
− ε], where ε > 0

• Assumption on f satisfied with βk = β if f β-smooth

23

A basic inequality

Using

(a) Upper bound assumption on f , i.e., Assumption (ii)
(b) Prox optimality condition: There exists sk+1 ∈ ∂g(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))

(c) Subgradient definition: g(xk) ≥ g(xk+1) + sTk+1(xk − xk+1)

f(xk+1) + g(xk+1)

(a)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk+1 − xk‖22 + g(xk+1)

(c)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk+1 − xk‖22 + g(xk)

− sTk+1(xk − xk+1)

(b)
= f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk)

+ γ−1k (xk+1 − (xk − γk∇f(xk)))T (xk − xk+1)

= f(xk) + g(xk)− (γ−1k −
βk
2)‖xk+1 − xk‖22

24

Function value decrease

• What conclusions can we draw from

f(xk+1) + g(xk+1) ≤ f(xk) + g(xk)− (γ−1k −
βk
2)‖xk+1 − xk‖22

• The requirement on γk ∈ [ε, 2
βk
− ε]:

• since βk ∈ [η, η−1] there is ε > 0 such that [ε, 2
βk
− ε] nonempty

• therefore δ > 0 exists such that

γ−1
k ∈ [βk

2
+ δ, δ−1] ⇒ γ−1

k −
βk
2
≥ δ > 0

which implies that function value decreases:

f(xk+1) + g(xk+1) ≤ f(xk) + g(xk)− δ‖xk+1 − xk‖22

• Not very useful!

25

Fixed-point residual converges

• Rearrange inequality from previous slide:

δ‖xk+1 − xk‖22 ≤ f(xk) + g(xk)− (f(xk+1) + g(xk+1))

• Telescope summation gives for all n ∈ N:

δ

n∑
k=1

‖xk+1 − xk‖22 ≤
n∑
k=1

(f(xk) + g(xk)− (f(xk+1) + g(xk+1)))

= f(x1) + g(x1)− (f(xn+1) + g(xn+1))

≤ f(x1) + g(x1)− p? <∞

where p? = minx(f(x) + g(x)) and <∞ since x1 ∈ domg

• Since δ > 0, this implies:

‖proxγg(xk − γ∇f(xk))− xk‖2 = ‖xk+1 − xk‖2 → 0

26

Residual convergence – Implication

What does ‖proxγkg(xk − γk∇f(xk))− xk‖2 → 0 mean and imply?

• That fixed-point equation will be satisfied in the limit

• By prox-grad optimality condition:

∂g(xk+1) +∇f(xk) 3 γ−1k (xk − xk+1)→ 0

as k →∞ (since γk ≥ ε, i.e., 0 < γ−1k ≤ ε−1) or equivalently

∂g(xk+1) +∇f(xk+1) 3 γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
uk

→ 0

where uk → 0 is concluded by continuity of ∇f , implications:
• Fixed-point characterization satisfied in the limit
• Nonconvex f : Critical point definition satisfied in the limit
• Convex f : Global optimality condition satisfied in the limit

• However, does not imply that (xk) converges to a fixed-point

27

Sequence convergence results

Nonconvex f :

• convergent (sub)sequences (if exist), converge to fixed-point

Convex f :

• sequence converges to fixed-point, hence to (global) solution

28

Sequence convergence – Convex case

• Assume, in addition to previous assumptions, that f is convex

• The following result can be shown to hold

A sequence (xk)k∈N converges to a point in fixT γPG if:

(i) ‖proxγg(xk − γ∇f(xk))− xk‖2 → 0 as k →∞
(ii) (‖xk − z‖2)k∈N converges for all z ∈ fixT γPG

• Condition (i) already shown to hold for prox-grad iteration

• Condition (ii) holds for convex problems (but not for nonconvex)

• A proof can be found in note on course webpage

29

Summary

Nonconvex f :

• Fixed-points x̄ such that 0 ∈ ∂g(x̄) +∇f(x̄) are critical points

• Generated sequence uk → 0 satisfies uk ∈ ∂g(xk+1) +∇f(xk+1)

• If convergent (sub)sequence exists, converges to fixed-point

Convex f :

• Fixed-points x̄ such that 0 ∈ ∂g(x̄) +∇f(x̄) are global solutions

• Generated sequence uk → 0 satisfies uk ∈ ∂g(xk+1) +∇f(xk+1)

• Sequence converges to fixed-point

30

Choose βk and γk

• Convergence based on assumption that βk known that satisfies

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk
2 ‖xk − xk+1‖22

call this descent condition (DC)

• If f is β-smooth, then βk = β is valid choice since

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

for all x, y, select γk ∈ [ε, 2
β − ε]

31

Choose βk and γk – Backtracking

• Backtracking, choose δ > 1, βk ∈ [η, η−1] and loop:

1. choose γk ∈ [ε, 2
βk
− ε]

2. compute xk+1 = proxγkg(xk − γk∇f(xk))
3. if descent condition (DC) satisfied

break
else

set βk ← δβk and go to 1
end

• Backtracking will terminate within finite number of backtracks if:
• f smooth (∇f Lipschitz), constant unknown: initialize βk = βk−1

• ∇f locally Lipschitz and sequence bounded: initialize βk = β̄

32

When is problem solved?

• Consider minimize
x

(f(x) + g(x))

• Apply proximal gradient method xk+1 = proxγkg(xk− γk∇f(xk))

• Algorithm sequence satisfies

∂g(xk+1) +∇f(xk+1) 3 γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
uk

→ 0

is ‖uk‖ small a good measure of being close to fixed-point?

33

When is problem solved?

Let δ > 0 and solve equivalent problem minimize
x

(δf(x) + δg(x)):

• Denote algorithm parameter γδ,k = γk
δ

• Algorithm satisfies:

xk+1 = proxγδ,kδg(xk − γδ,k∇δf(xk)) = proxγkg(xk − γk∇f(xk))

i.e., the same algorithm as before

• However, uδ,k in this setting satisfies

uδ,k = γ−1δ,k (xk − xk+1) +∇δf(xk+1)−∇δf(xk)

= δ(γ−1δ (xk − xk+1) +∇f(xk+1)−∇f(xk))

= δuk

i.e., same algorithm but different optimality measure

• Optimality measure should be scaling invariant

34

Stopping condition

• For β smooth f , use scaled condition β−1uk

β−1uk := β−1(γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk))

which is scale invariant

• Stop algorithm when β−1uk is small enough
• absolute stopping conditions with small εabs > 0

• β−1‖uk‖2 ≤ εabs
• β−1(γ−1

k ‖xk − xk+1‖2 + ‖∇f(xk)−∇f(xk+1)‖2) ≤ εabs
• relative stopping condition with small εrel, ε > 0:

• β−1 ‖uk‖
‖xk‖+ε

≤ εrel
• β−1γ−1

k

‖xk−xk+1‖2
‖xk‖2+ε

+
‖∇f(xk)−∇f(xk+1)‖2

‖∇f(xk)‖2+ε
≤ εrel

• Problem considered solved to optimality if, say, εabs ≤ 10−6

• Sometimes want to stop algorithm early, a form of regularization

• Other stopping conditions can be used, should be scaling invariant

35

Example – SVM

• Classification problem from SVM lecture, SVM with
• polynomial features of degree 2
• regularization parameter λ = 0.00001

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

36

Example – Fixed-point residual

• Plots β−1‖uk‖2 = β−1‖γ−1k (xk −xk+1) +∇f(xk+1)−∇f(xk)‖2
• Shows residual up to 20’000 iterations

• Quite many iterations needed to converge

#10 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0
β
−

1
‖
u
k
‖

iteration k

37

Example – SVM higher degree polynomial

• Classification problem from SVM lecture, SVM with
• polynomial features of degree 6
• regularization parameter λ = 0.00001

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

38

Example – Fixed-point residual

• Plots β−1‖uk‖2 = β−1‖γ−1k (xk −xk+1) +∇f(xk+1)−∇f(xk)‖2
• Shows residual up to 200’000 iterations (10x more than before)

• Many iterations needed

#10 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1
β
−

1
‖
u
k
‖

iteration k

39

Applying proximal gradient to primal problems

Problem minimize
x

f(x) + g(x):

• Assumptions:
• f smooth
• g closed convex and prox friendly1

• Algorithm: xk+1 = proxγkg(xk − γk∇f(xk))

Problem minimize
x

f(Lx) + g(x):

• Assumptions:
• f smooth (implies f ◦ L smooth)
• g closed convex and prox friendly1

• Gradient ∇(f ◦ L)(x) = LT∇f(Lx)

• Algorithm: xk+1 = proxγkg(xk − γkL
T∇f(Lxk))

1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable
40

Applying proximal gradient to dual problem

Dual problem minimize
ν

f∗(ν) + g∗(−LT ν):

• Assumptions:
• f closed convex and prox friendly
• g strongly convex (which implies g∗ ◦ −LT smooth)

• Gradient: ∇(g∗ ◦ −LT)(ν) = −L∇g∗(−LT ν)

• Prox (Moreau): proxγkf∗(ν) = ν − γkproxγ−1
k f (γ−1k ν)

• Algorithm:

νk+1 = proxγkf∗(νk − γk∇(g∗ ◦ −LT)(νk))

= (I − γkproxγ−1
k f (γ−1k ◦ I))(νk + γkL∇g∗(−LT νk))

• Problem must be convex to have dual!

• Enough to know prox of f

41

Primal recovery

• Fermat’s rule for dual proximal gradient method

0 ∈ ∂f∗(νk+1) +∇(g∗ ◦ −LT)(νk) + γ−1k (νk+1 − νk)

= ∂f∗(νk+1)− L∇(g∗(−LT νk) + γ−1k (νk+1 − νk)

• Now, let xk = ∇g∗(−LT νk), then

0 ∈

{
∇g∗(−LT νk)− xk
∂f∗(νk+1)− Lxk + γ−1k (νk+1 − νk)

and (xk, νk) satisfies optimality condition when νk+1 − νk → 0

42

What problems cannot be solved (efficiently)?

Problem minimize
x

f(x) + g(x)

• Assumptions: f and g convex and nonsmooth
• No term differentiable, another method must be used:

• Subgradient method
• Douglas-Rachford splitting
• Primal-dual methods

Problem minimize
x

f(x) + g(Lx)

• Assumptions:
• f smooth
• g nonsmooth convex
• L arbitrary structured matrix

• Can apply proximal gradient method, but

proxγk(g◦L)(z) = argmin
x

g(Lx) + 1
2γ ‖x− z‖

2
2)

often not “prox friendly”, i.e., it is expensive to evaluate

43

