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Learning goals

• Know the coordinate gradient and stochastic gradient methods
• Understand when one or the other can/should be used
• Understand conditions for convergence
• Know how the analyses differ and what step-sizes work
• Relate analysis to the one for proximal gradient method
• Know result that convergence of stochastic methods is based on
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Why stochastic methods?
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Randomized selections

• Stochastic proximal gradient descent solves finite sum problems

minimize
x

1
N

(
N∑
i=1

fi(x)

)
+ g(x)

where gradient is taken w.r.t. randomly chosen fi instead of f

• Coordinate proximal gradient descent solves separable problems

minimize
x

f(x) +

n∑
i=1

gi(xi)

where one randomly chosen coordinate is updated every iteration

• Deterministic (cyclic) selection rules can also be used

• Random selection gives better convergence guarantees
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Stochastic algorithm analysis

• Stochastic algorithms generate realizations of stochastic process

• Stochastic algorithm analysis:

(i) analyze the generated stochastic process of random variables
(ii) draw conclusion on (almost) all realizations

• More specifically:

(i) constructing (almost) supermartingale inequality for the algorithm
(ii) applying Robbins Siegmund supermartingale theorem

• Typically strong guarantees for (almost) all realizations
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Robbins Siegmund supermartingale theorem

Suppose that:

(i) (xk)k∈N: sequence of Rn-valued random variables

(ii) (vk)k∈N: sequence of R≥0-valued random variables

(iii) (wk)k∈N: sequence of R≥0-valued random variables

(iv) V : Rn → R≥c is lower bounded function (V (x) ≥ c) with c ∈ R
(v) the following (almost) supermartingale inequality holds a.s. ∀k:

E[V (xk+1)|Fk] ≤ V (xk) + vk − wk,

where E conditioned on Fk: “information known until iterate k”

Then, whenever (vk)k∈N is summable:

• V (xk) converges a.s. to a R≥c-valued random variable

• EV (xk) converges a.s. to a R≥c-valued number

• wk∈N is summable and wk → 0 as k →∞ a.s.

a.s. means almost surely; for “all” realizations (except 0-measure)
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Stochastic Proximal Gradient
Method
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Proximal gradient method

• Proximal gradient method solves problems of the form

minimize
x

f(x) + g(x)

where (at least in our analysis)
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex

• For large problems, gradient is expensive to compute
⇒ replace by unbiased stochastic approximation of gradient
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Unbiased stochastic gradient approximation

• Stochastic gradient:
• estimator ∇̂f(x) outputs Rn-valued random variable
• realization ∇̃f(x) : Rn → Rn outputs a realization in Rn

• An unbiased stochastic gradient approximator ∇̂f satisfies

E∇̂f(x) = ∇f(x)

• If x is random variable (as in SGD) an unbiased estimator satisfies

E[∇̂f(x)|x] = ∇f(x)
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Stochastic gradient descent (SGD)

• The following iteration generates (xk)k∈N of random variables:

xk+1 = proxγkg(xk − γk∇̂f(xk))

since ∇̂f outputs random Rn-valued variables

• Stochastic gradient descent finds a realization of this sequence:

xk+1 = proxγkg(xk − γk∇̃f(xk))

where (xk)k∈N here is a realization which is different every time

• Sloppy in notation for when xk is random variable vs realization

• Efficient if realizations ∇̃f much cheaper to evaluate than ∇f
• Analyze former and draw conclusions of (almost) all realizations
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Stochastic gradients – Finite sum problems

• Consider finite sum problems of the form

minimize
x

1
N

(
N∑
i=1

fi(x)

)
︸ ︷︷ ︸

f(x)

+g(x)

where ( 1
N is for convenience and)

• all fi : Rn → R are βi-smooth (not necessarily convex)
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex

• Training problems of this form, where sum over training data

• Stochastic gradient: select fi at random and take gradient step
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Single function stochastic gradient

• Let I be a {1, . . . , N}-valued random variable

• Let, as before, ∇̂f denote stochastic gradient estimator

• Realization: let i be drawn from probability distribution of I

∇̃f(x) = ∇fi(x)

where we will use uniform probability distribution

pi = p(I = i) = 1
N

• Stochastic gradient is unbiased:

E[∇̂f(x)|x] =

N∑
i=1

pi∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Mini-batch stochastic gradient

• Let B be set of K-sample mini-batches to choose from:
• Example: 2-sample mini-batches and N = 4:

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

• Number of mini batches
(
N
K

)
, each item in

(
N−1
K−1

)
batches

• Let B be B-valued random variable
• Let, as before, ∇̂f denote stochastic gradient estimator
• Realization: let B be drawn from probability distribution of B

∇̃f(x) = 1
K

∑
i∈B
∇fi(x)

where we will use uniform probability distribution

pB = p(B = B) = 1
|B|

• Stochastic gradient is unbiased:

E∇̂f(x) = 1

(NK)

∑
B∈B

1
K

∑
i∈B

∇fi(x) =
(N−1
K−1)
(NK)K

N∑
i=1

∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Stochastic gradient descent for finite sum problems

• The algorithm, choose x0 ∈ Rn and iterate:

1. Sample a mini-batch Bk ∈ B of indices uniformly (prob. 1
|B| )

2. Run

xk+1 = proxγkg(xk −
γk
|Bk|

∑
j∈Bk

∇fj(xk))

• Of course, can have B = {1, . . . , N} and sample only one function

• Gives realization of underlying stochastic process

• How about convergence?
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Stochastic gradient method with γk = 1/3

Levelsets of summands Levelset of sum
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Gradient method with γk = 1/3

Levelsets of summands Levelset of sum

SGD will not converge for constant steps (unlike gradient method)
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Fixed step-size SGD does not converge to solution

• We can at most hope for finding point x̄ such that

0 ∈ ∂g(x̄) +∇f(x̄)

i.e., the proximal gradient fixed-point characterization

• Consider setting g = 0 and assume xk such that 0 = ∇f(xk)
• That 0 = ∇f(xk) does not imply 0 = ∇fi(xk) for all fi, hence

xk+1 = xk − γk∇fi(xk) 6= xk

i.e., will move away from prox-grad fixed-point for fixed γk > 0
• Need diminishing step-size rule
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Assumptions for convergence

Assumptions:

(i) No nonsmooth term1, i.e., g = 0

(ii) f : Rn → R is β-smooth, for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖y − x‖

2
2

(iii) Stochastic gradient of f is unbiased: E[∇̂f(x)|x] = ∇f(x)

(iv) Variance E[‖∇̂f(x)−∇f(x)‖22|x] ≤ σ2 is bounded

(v) Step-sizes satisfy
∑∞
k=1 γk =∞ and

∑∞
k=1 γ

2
k <∞

1Simplifies analysis in nonconvex setting, in convex setting easier to incluce
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Convergence proof – Roadmap

• Stochastic gradient descent

xk+1 = xk − γk∇̃f(xk) (1)

gives realization of stochastic process generated by

xk+1 = xk − γk∇̂f(xk) (SGD)

where
• (1): xk ∈ Rn, can be implemented
• (SGD): xk are Rn-valued random variables, not implementable

• Will analyze:
• stochastic process generated by (SGD) via supermartingale
• gives results of “all” (except 0-measure) realizations given by (1)
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Convergence – SGD martingale inequality

Expectation and variance satisfy (also when conditioned):

(a) monotonicity: if X ≤ Y , then E[X] ≤ E[Y ]

(b) linearity: E[αX + βY ] = αE[X] + βE[Y ] for α, β ∈ R
(c) E[‖Z‖22] = E[‖Z − E[Z]‖22] + ‖E[Z]‖22

where X,Y are R-valued, Z is Rn-valued random variables. Therefore,

E[f(xk+1)|xk]

(ii), (a) ≤ E[f(xk) +∇f(xk)T (xk+1 − xk) + β
2
‖xk+1 − xk‖22|xk]

(b), (SGD) = f(xk)− γk∇f(xk)TE[∇̂f(xk)|xk] +
βγ2k
2

E[‖∇̂f(xk)‖22|xk]

(iii), (c) = f(xk)− γk∇f(xk)T∇f(xk)

+
βγ2k
2

(E[‖∇̂f(xk)− E[∇̂f(xk)|x]‖22|xk] + ‖E[∇̂f(xk)|xk]‖22)

(iii) = f(xk)− γk(1− βγk
2

)‖∇f(xk)‖22 +
βγ2k
2

(E[‖∇̂f(xk)−∇f(xk)‖22|xk])

(iv) ≤ f(xk)− γk(1− βγk
2

)‖∇f(xk)‖22 +
βγ2k
2
σ2
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SGD – Matching with supermartingale theorem

• SGD satisfies (almost) supermartingale inequality

E[f(xk+1)|xk] ≤ f(xk)− γk(1− βγk
2 )‖∇f(xk)‖22 +

βγ2
k

2 σ2

• After, say m, iterations, γk ≤ 1
β (diminishing γk), hence ∀k ≥ m:

E[f(xk+1)|xk] ≤ f(xk)− γk
2 ‖∇f(xk)‖22 +

βγ2
k

2 σ2

we consider this sequence and let m = 1 (w.l.o.g.)

• Matching sequence with Robbins-Siegmund theorem:

V = f, wk = γk
2 ‖∇f(xk)‖22, vk =

βγ2
k

2 σ2

where (vk)k∈N must be summable to apply theorem:
• γk cannot be fixed for all k (“converges to noise ball”)
• instead

∑∞
k=1 γ

2
k <∞ (Assumption (v)) to have vk summable
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SGD – Supermartingale theorem consequence

Since (γ2k)k∈N summable, hence (vk)k∈N summable:

• (Ef(xk))k∈N converges a.s. (not very useful)

• (wk)k∈N = (γk2 ‖∇f(xk)‖22)k∈N is a.s. summable:
• Even though

∑∞
k=1 γk =∞, cannot conclude ∇f(xk)→ 0

• However, min
j=1,...,k

‖∇f(xj)‖2 → 0 as k →∞ (next slide)

21



Minimum gradient convergence

• We concluded that (γk2 ‖∇f(xk)‖22)k∈N is summable a.s.

• Therefore, the following holds at every iteration K a.s.

min
k=1,...,K

‖∇f(xk)‖22
K∑
k=1

γk
2 ≤

K∑
k=1

γk
2 ‖∇f(xk)‖22 ≤ C

where C is sum of (γk2 ‖∇f(xk)‖22)k∈N, hence finite

• Hence, for “all” realizations (except a 0-measure), i.e., a.s.

min
k=1,...,K

‖∇f(xk)‖22 ≤ 2C∑K
k=1 γk

→ 0

as K →∞, since
∑∞
k=1 γk =∞ (Assumption (v))
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A step-length choice

The requirement to conclude that for “all” realizations (xk)k∈N

min
k=1,...,K

‖∇f(xk)‖22 → 0

is γk not summable but square summable, this is satisfied, e.g., for

γk = M
k

for a positive M ∈ R>0
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Convex setting

• Difficult to prove sequence convergence also in convex setting

• Reason; algorithm moves away from prox-grad fixed-point set
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Example – SGD with different step-lengths

• Problem minimizex ‖Ax− b‖22
• with A ∈ R40×20 and b ∈ R40 randomly generated

• x axis: iteration, y axis: function value

0 2.5×104 5.0×104 7.5×104 1.0×105

10-2 

100 

102 

104 

||A
x-

b|
|^

2-
p^

*

SG g
SG g/10
SG g/100
SG 10g/k
SG 10g/k^2
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Randomized Coordinate Proximal
Gradient Descent
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Composite problem format

• Consider composite problems of the form

minimize
x

f(x) +

n∑
i=1

gi(xi)

where
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex and separable

• Problem structure includes:
• Training problems with ‖x‖1 or ‖x‖22 regularization
• Dual SVM problem formulation
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Coordinate proximal gradient descent

• Compute proximal gradient step, update random coordinate j:

j ∈ {1, . . . , n} is randomly chosen

xk+1
j = proxγkgj (x

k
j − γk∇f(xk)j)

xk+1
i = xki for all i 6= j

• Comments:
• We use super-scripts for iteration and sub-script for coordinate
• Full gradient computed, inefficient? Sometimes very efficient!
• Algorithm analysis very similar to proximal gradient descent
• Can take blocks of coordinates instead

• Recall prox is separable since g is, so algorithm can be seen as

xk+1
1
...

xk+1
j
...

xk+1
n

 =


xk1
...

(proxγg(x
k − γ∇f(xk)))j

...
xkn

 ,

i.e., take full prox-grad step, update only one variable 28



Coordinate descent – Example

• Coordinate descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Step-size parameter γ = 1

β
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Example – Comparison to gradient descent

• Gradient descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Step-size parameter γ = 1

β , similar progress
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Coordinate descent – Another formulation

• We will formulate algorithm differently for analysis

• Introduce coordinate-selection set

Cxj = {y ∈ Rn : yl = xl for all l 6= j}

i.e., yl = xl for all coordinates l 6= j, only yj is free

• The coordinate descent update is, select j at random and:

xk+1 = argmin
y

(f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖22 + g(y) + ι

Cx
k
j

(y))

= argmin
y

(g(y) + 1
2γk
‖y − (xk − γk∇f(xk))‖22 + ι

Cx
k
j

(y))

= argmin
yj ,yl=x

k
l

(gj(yj) + 1
2γk
‖yj − (xkj − γk∇f(xk)j)‖22)

=

{
proxγkgj(y)(x

k
j − γk∇f(xk)j) for coordinate j

xkl for all coordinates l 6= j
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Block-coordinate descent

• Let B be set of block of variables, e.g.,
• Overlapping blocks with each coordinate in K elements

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

requires single-coordinate separable g
• Nonoverlapping blocks

B = {{1, 2}, {3, 4}, {5, 6}}

can have block-separable g
• Draw block j uniformly from B and define the set Cxj as before:

Cxj = {y ∈ Rn : yl = xl for all l 6∈ j}
i.e., yl = xl for all coordinates l 6∈ j only block j is free

• The coordinate descent update is, select block j at random and:

xk+1 = argmin
y

(f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖22 + g(y) + ι

Cx
k
j

(y))

=

{
proxγkgj(y)(x

k
j − γk∇f(xk)j) for block j

xkl for all coordinates l 6∈ j

where notation xj is vector of coordinates in j
32



Expected value of residual

• For convergence, we will need1 for some ξ > 0

E[‖xk+1 − xk‖22|xk] = ξ‖proxγkg(xk − γk∇f(xk))− xk‖22 (2)

• For single-valued coordinate descent, it holds with ξ = 1
n , proof:

E[‖xk+1 − xk‖22|xk] =

n∑
j=1

1
n

∥∥∥∥∥∥∥∥∥∥∥∥


xk+1
1 − xk1 [= 0]

...
proxγkgj(y)(x

k
j − γk∇f(xk)j)− xj

...
xk+1
n − xkn[= 0]



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= 1
n

n∑
j=1

‖proxγkgj(y)(x
k
j − γk∇f(xk)j)− xj‖22

= 1
n‖proxγkg(y)(x

k − γk∇f(xk))− x‖22
Requires g to be separable!

• Similar thing (different constants) holds for block-coordinate

1Actually only need r.h.s. to 0 if l.h.s. to 0 in (2)
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We will analyze

We will analyze: for every k, draw j from distribution and update

xk+1 = argmin
y

(f(xk) +∇f(xk)T (y − xk) + 1
2γk
‖y − xk‖22 + g(y) + ι

Cx
k
j

(y))

= proxγk(g+ι
Cx
k
j

)
(xk − γk∇f(xk))

with randomized (block) coordinate descent as special case, where

• coordinate-selector Cxj depends on random variable j so that:

E[‖xk+1 − xk‖22|xk] = ξ‖proxγkg(xk − γk∇f(xk))− xk‖22

for some ξ > 0 (satisfied for what have seen)

• g has separability structure compatible with Cxj
• Optimality condition (consider g + ι

Cx
k
j

as g):

0 ∈ ∂(g + ι
Cx

k
j

)(xk+1) + γ−1k (xk+1 − (xk − γk∇f(xk)))
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Assumptions for convergence

Essentially same assumptions and proof as for proximal gradient

(i) f : Rn → R is continuously differentiable (not necessarily convex)

(ii) f is β-smooth, i.e., for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

(iii) g : Rn → R ∪ {∞} closed convex (structure compatible with Cxj )

(iv) A minimizer exists

(v) Algorithm parameters γk ∈ [ε, 2
β − ε], where ε > 0

(vi) Cxj where j is random variable and g are such that

• xk ∈ Ckj for all k
• E[‖xk+1 − xk‖22|xk] = ξ‖proxγkg(xk − γk∇f(xk))− xk‖22,

where ξ > 0 and expectation is over random variable j
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A basic inequality

Using

(a) β-smoothness of f , i.e., Assumption (ii)
(b) Prox optimality condition: There exists sk+1 ∈ ∂(g+ ι

Cx
k
j

)(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))

(c) Subgradient, h = g + ι
Cx

k
j

: h(xk) ≥ h(xk+1) + sTk+1(xk − xk+1)

it holds for every realization (since ι
Cx

k
j

(xk+1) = ι
Cx

k
j

(xk) = 0):

f(xk+1) + g(xk+1) = f(xk+1) + g(xk+1) + ι
Cx

k
j

(xk+1)

(a) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + β
2 ‖x

k+1 − xk‖22 + (g + ι
Cx

k
j

)(xk+1)

(c) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + β
2 ‖x

k+1 − xk‖22
+ g(xk) + ι

Cx
k
j

(xk)− sTk+1(xk − xk+1)

(b) = f(xk) +∇f(xk)T (xk+1 − xk) + β
2 ‖x

k+1 − xk‖22
+ g(xk) + γ−1k (xk+1 − (xk − γk∇f(xk)))T (xk − xk+1)

= f(xk) + g(xk) + (γ−1k −
β
2 )‖xk+1 − xk‖22
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Satisfies fixed-point characterization

• Inequality identical to in proximal gradient method
• For proximal gradient method

‖xk+1 − xk‖2 = ‖proxγkg(xk − γk∇f(xk))− xk‖2
hence fixed-point residual converges as consequence of inequality

• Take expectation of inequality conditioned on xk to get that

E[f(xk+1) + g(xk+1)|xk]

≤ f(xk) + g(xk) + (γ−1k −
β
2 )E[‖xk+1 − xk‖22|xk]

(vi), (v) ≤ f(xk) + g(xk)− δ‖proxγkg(xk − γk∇f(xk))− xk‖22
holds for the underlying stochastic process for some δ > 0

• This is almost supermartingale, Robbins-Siegmund implies

∞∑
k=1

δ‖proxγkg(x
k − γk∇f(xk))− xk‖22 <∞,

i.e., ‖proxγkg(x
k − γk∇f(xk))− xk‖2 → 0 as k →∞ a.s.
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Convergence summary

• Analyzed

xk+1 = proxγk(g+ι
Cx
k
j

)
(xk − γk∇f(xk))

and showed ‖proxγkg(x
k − γk∇f(xk))− xk‖2 → 0 a.s.

• This implies that a.s. (conclusion in proximal gradient lecture):

∂g(xk+1) +∇f(xk+1) 3 γ−1k (xk − xk+1) +∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
uk

→ 0

i.e., fixed-point characterization satisfied in limit

• Question: When is the algorithm efficient to implement?
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Efficient implementation

• We consider 1-coordinate case (same applies to block setting)

• g must be separable to be compatible with Cxj
• The update is

xk+1
j = proxγkgj (x

k
j − γk∇f(xk)j)

• proxγkgj efficient: 1D problem (often closed form solution)

• ∇f(xk)j , i.e., element j of gradient:
• requires in general to compute full gradient, then pick element
• Will cover two cases when much cheaper
• Efficient if cost roughly 1

n
of full gradient cost

39



Example – Efficient coordinate gradient evaluations

• Let f(x) = 1
2x

THx+ hTx with H ∈ Rn×n, then:

∇f(x)j = (Hx)j + hj = (hj1, . . . , hjn)Tx+ hj

i.e. updated at cost 1
n of full gradient (e.g., for dual SVM)

• Let ∇f(x) = LT (σ(Lx)− b) with L ∈ Rm×n and σ monotone
• Covers least squares and logistic regression
• Coordinate gradient

(∇f(x))j = (LT (σ(Lx)− b))j = (LT )j(σ(Lx)− b)

where (LT )j ∈ Rm is j:th row in LT

• Assume we know z = Ly at point y = (x1, . . . , xl, . . . , xn):

Lx = Ly + L(x− y) = z + Ll(xl − yl)

where Ll ∈ Rn is l:th row in L (note xl − yl scalar) and gradient

(∇f(x))j = (LT )j(σ(z + Ll(xl − yl))− b)

can be updated at 1
m

and 1
n

of cost for the two steps
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Convex case

• Assume, in addition to previous assumptions, that f is convex

• The following result can be shown to hold

A sequence (xk)k∈N converges a.s. to a fixed-point of

T γPG := proxγkg(I − γk∇f)

if the following conditions hold almost surely:

(i) ‖proxγg(xk − γ∇f(xk))− xk‖ → 0 as k →∞
(ii) (‖xk − z‖)k∈N converges for all z ∈ fixT γPG

• Condition (i) already shown to hold for coordinate iteration

• Condition (ii) holds for convex problems (but not for nonconvex)

• Proof very similar to for proximal gradient method
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Individual step-lengths

• Performance can be greatly improved with individual step-lengths
• Coordinate descent on β-smooth quadratic problem

minimize
x

1

2

[
x1
x2

]T [
0.1 −0.1
−0.1 1

] [
x1
x2

]
• Step-size parameter γ1 = 1

0.1 , γ2 = 1

• Achieved by using tighter upper bound

f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2‖x− y‖

2
H

for some matrix H – next lecture
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Numerical example

• Same least squares construction as in stochastic example
• Compares: gradient, coordinate, and scaled coordinate descent
• x axis normalized for fair comparison, y-axis is function value
• Scaled version much faster
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