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Learning goals

® Know the coordinate gradient and stochastic gradient methods

® Understand when one or the other can/should be used

® Understand conditions for convergence

Know how the analyses differ and what step-sizes work

Relate analysis to the one for proximal gradient method

Know result that convergence of stochastic methods is based on



Why stochastic methods?



Randomized selections

Stochastic proximal gradient descent solves finite sum problems
N
s s 1
minimize 5 <Z f@($)> + g(x)
i=1

where gradient is taken w.r.t. randomly chosen f; instead of f

Coordinate proximal gradient descent solves separable problems

mlnlmlze flx)+ Z gi(zi)

where one randomly chosen coordinate is updated every iteration
Deterministic (cyclic) selection rules can also be used

Random selection gives better convergence guarantees



Stochastic algorithm analysis

® Stochastic algorithms generate realizations of stochastic process
® Stochastic algorithm analysis:

(7) analyze the generated stochastic process of random variables
(#4) draw conclusion on (almost) all realizations

® More specifically:

(7) constructing (almost) supermartingale inequality for the algorithm
(#4) applying Robbins Siegmund supermartingale theorem

® Typically strong guarantees for (almost) all realizations



Robbins Siegmund supermartingale theorem

Suppose that:

(i) (xk)ken: sequence of R™-valued random variables

(73) (vk)ren: sequence of Rx(-valued random variables

(#33) (wg)ken: sequence of Rxg-valued random variables

(iv) V : R™ — Rx. is lower bounded function (V(z) > ¢) with c € R
(v) the following (almost) supermartingale inequality holds a.s. Vk:

E[V(@g+1)|Fi] < V(xk) + v — wy,
where E conditioned on Fj: “information known until iterate k"

Then, whenever (vg)ren is summable:

® V(xy) converges a.s. to a Rx.-valued random variable
® EV (x)) converges a.s. to a R>.-valued number
® wren is summable and w, — 0 as K — oo a.s.

a.s. means almost surely; for “all” realizations (except 0-measure)



Stochastic Proximal Gradient

Method



Proximal gradient method

® Proximal gradient method solves problems of the form

minimize f(x) + g(x)

where (at least in our analysis)
® f:R" — R is B-smooth (not necessarily convex)
® g:R" - RU{oo} is closed convex
® For large problems, gradient is expensive to compute
= replace by unbiased stochastic approximation of gradient



Unbiased stochastic gradient approximation

® Stochastic gradient:
® estimator V f(z) outputs R™-valued random variable
® realization V f(z) : R® — R" outputs a realization in R"

® An unbiased stochastic gradient approximator @f satisfies
EVf(z) = Vf(z)
® If x is random variable (as in SGD) an unbiased estimator satisfies

E[Vf(z)la] = V f(x)



Stochastic gradient descent (SGD)

The following iteration generates (xy)gen of random variables:
Try1 = prox,,  (zr — 7V f(wk))

since @f outputs random R™-valued variables

Stochastic gradient descent finds a realization of this sequence:

Tgy1 = Prox,,  (zx — WV f(xx))

where (x)ren here is a realization which is different every time
Sloppy in notation for when x, is random variable vs realization
Efficient if realizations ﬁf much cheaper to evaluate than V f

Analyze former and draw conclusions of (almost) all realizations
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Stochastic gradients — Finite sum problems

e Consider finite sum problems of the form

N
minilmize % (Z fz($)> +g(z)

i=1

f(z)

where (4 is for convenience and)

® all f; : R™ — R are B;-smooth (not necessarily convex)
® f:R"™ — R is B-smooth (not necessarily convex)
® g:R" - RU{oco} is closed convex

® Training problems of this form, where sum over training data

® Stochastic gradient: select f; at random and take gradient step
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Single function stochastic gradient

Let I be a {1,..., N}-valued random variable
Let, as before, @f denote stochastic gradient estimator

Realization: let 2 be drawn from probability distribution of I
Vf(z) =V fi(z)

where we will use uniform probability distribution

2|~

pi=pll =1i) =

Stochastic gradient is unbiased:

N N
EIVS @] = 3o piVhile) = & 3 Vhile) = V(@)
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Mini-batch stochastic gradient

® Example: 2-sample mini-batches and N = 4:

Let B be set of K-sample mini-batches to choose from:

B = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

® Number of mini batches (Z) each item in (K 1) batches

Let B be B-valued random variable

=+ Vi)

i€B

where we will use uniform probability distribution

pp =pB=B) =
® Stochastic gradient is unbiased:
(XD 5
EY f(x oy 2 & 2 V@) = 5 > Vi) =
BeB i€B K7 =1

Let, as before, @f denote stochastic gradient estimator
Realization: let B be drawn from probability distribution of B

> " Vfi(z) = Vf(2)

=1
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Stochastic gradient descent for finite sum problems

® The algorithm, choose xy € R™ and iterate:
1. Sample a mini-batch By € B of indices uniformly (prob. ﬁ)
2. Run
1 = prox, (o — 5 Y Vi(zk)
JEBy
® Of course, can have B = {1,..., N} and sample only one function

® Gives realization of underlying stochastic process

How about convergence?
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SGD - Example

o letcg+co+ce3=0
e Solve minimize, (3 (||z — c1|3 + ||z — c2||3 + ||z — ¢3]13) = 2|z (|3 + ¢

e Stochastic gradient method with v, = 1/3

Levelsets of summands Levelset of sum
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SGD - Example

o letcg+co+ce3=0
e Solve minimize, (3 (||z — c1|3 + ||z — c2||3 + ||z — ¢3]13) = 2|z (|3 + ¢
e Gradient method with v, = 1/3

©

Levelsets of summands Levelset of sum

e SGD will not converge for constant steps (unlike gradient method)
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Fixed step-size SGD does not converge to solution

® We can at most hope for finding point Z such that
0€dg(z)+ Vf(z)

i.e., the proximal gradient fixed-point characterization
e Consider setting g = 0 and assume 1z, such that 0 = V f(xy)
® That 0 = Vf(z) does not imply 0 = V f;(z) for all f;, hence
Tpy1 = ok — YV fi(Tr) # Tk

i.e., will move away from prox-grad fixed-point for fixed ~; > 0
® Need diminishing step-size rule
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Assumptions for convergence

Assumptions:
(i) No nonsmooth term?, i.e., g =0
(it) f:R™ — Ris B-smooth, for all z,y € R™:
Fy) < @)+ V@) (y— )+ Sy — I3

(iii) Stochastic gradient of f is unbiased: E[V f(z)|z] = Vf(xz)
(iv) Variance E[||Vf(z) — Vf(2)||2|z] < 02 is bounded
(v) Step-sizes satisfy > 7o |y, = o0 and > o, VZ < 00

1Simplifies analysis in nonconvex setting, in convex setting easier to incluce
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Convergence proof — Roadmap

® Stochastic gradient descent
Th4+1 = Tk — Vkﬁf(xk) (1)

gives realization of stochastic process generated by

Tg4+1 = Tk — ’Yk§f($k) (SGD)

where
® (1): z € R", can be implemented
® (SGD): ) are R™-valued random variables, not implementable
o Will analyze:

® stochastic process generated by (SGD) via supermartingale
® gives results of “all” (except 0-measure) realizations given by (1)
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Convergence — SGD martingale inequality

Expectation and variance satisfy (also when conditioned):
(a) monotonicity: if X <Y, then E[X] < E[Y]
(b) linearity: E[aX + BY] = oE[X] 4+ BE[Y] for o, 8 € R
(o) E[IZ|3] = E[I1Z — E[Z]113] + | E[Z]|3
where X, Y are R-valued, Z is R™-valued random variables. Therefore,
E[f(zrs1)|zk]
(i1), (@) < E[f(zx) + Vf(@r)" (@1 — @) + 51 @rsr — x5 |2a]
(b).(SGD) = f(wx) — WV f (i) "E[V £ () |wx] + ZZEE|V £ () [3les]
(i), (¢) = f(a) = WV f(@x)" V f(2x)
+ B[V £ (o) — BV (@)l 3lex] + (B £ (@)lax[3)
(i10) = f(ax) — (1 — )|V £ ()3 + 22 BV £ (20) — Vf (@) Fla))
(i) < f(on) = (1 = ZO)IVF@0)l3 + 2ho?
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SGD - Matching with supermartingale theorem

® SGD satisfies (almost) supermartingale inequality

E[f (zren)lzx) < Flan) = (1 — Z2)IVF () |3 + 2o

e After, say m, iterations, v < % (diminishing %), hence Vk > m:

E(f(zrs1)|ze] < flan) — BV F(z)]5 + %202

we consider this sequence and let m =1 (w.l.o.g.)

® Matching sequence with Robbins-Siegmund theorem:
2
V=f  we=%IV@IB w= 3

where (vg)keny must be summable to apply theorem:

® -~ cannot be fixed for all k (“converges to noise ball”)
® instead ) ;2 vk < oo (Assumption (v)) to have v, summable
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SGD - Supermartingale theorem consequence

Since (v2)ren summable, hence (vi)ken summable:

® (Ef(xr))ken converges a.s. (not very useful)
* (wp)ken = (%[|V f(@k)]|3)ken is a.s. summable:

® Even though > 72 | 7% = 00, cannot conclude V f(zx) — 0
® However, r{lin . IV f(z;)|l2 — 0 as k — oo (next slide)
j=1,...,
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Minimum gradient convergence

* We concluded that (% ||V f(2x)||3) ken is summable a.s.

® Therefore, the following holds at every iteration K a.s.
K K
I2 ., , 2
. m1n ||Vf k) 2]}_1 T < kg 1 ZVE(ze)llz <C

where C'is sum of (2(|V f(x)[|3)ken, hence finite

® Hence, for “all” realizations (except a 0-measure), i.e., a.s.

Lmin [Vl < 9 0

5.

as K — o0, since >, vk = 0o (Assumption (v))
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A step-length choice

The requirement to conclude that for “all” realizations (xj)ren

min [V (a)]3 0

k=1,

is v not summable but square summable, this is satisfied, e.g., for

for a positive M € Ryq
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Convex setting

¢ Difficult to prove sequence convergence also in convex setting

® Reason; algorithm moves away from prox-grad fixed-point set
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Example — SGD with different step-lengths

® Problem minimize, || Az — b||3

e with A € R*%20 and b € R*° randomly generated

® 1 axis: iteration, y axis: function value
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Randomized Coordinate Proximal
Gradient Descent
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Composite problem format

® Consider composite problems of the form

mlmmlze flx)+ E gi(zi)

where
® f:R"™ — R is S-smooth (not necessarily convex)
® g:R®™ - RU{oo} is closed convex and separable
® Problem structure includes:

® Training problems with ||z||1 or ||z||3 regularization
® Dual SVM problem formulation
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Coordinate proximal gradient descent

® Compute proximal gradient step, update random coordinate j:

j €{1,...,n} is randomly chosen
k+1 k k
zj+ = prox,, . (ZEj -V f(z®);)
ot = 2k forall i #£ 5

® Comments:
® We use super-scripts for iteration and sub-script for coordinate
® Full gradient computed, inefficient? Sometimes very efficient!
® Algorithm analysis very similar to proximal gradient descent
® Can take blocks of coordinates instead

® Recall prox is separable since g is, so algorithm can be seen as

it ok
af T = | (prox,  («* =7V f(z*)); | ,
xffl x’,ﬁ

i.e., take full prox-grad step, update only one variable
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Coordinate descent — Example

® Coordinate descent on -smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size parameter y =
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Coordinate descent — Example

® Coordinate descent on -smooth quadratic problem

1w [0l —01] =
T2 9 o] [~01 1 | o

® Step-size parameter y =

|
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Example — Comparison to gradient descent

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size parameter v = % similar progress
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Example — Comparison to gradient descent

® Gradient descent on -smooth quadratic problem

1w [0l —01] =
minimize 3 | 01 1 .

® Step-size parameter v = % similar progress
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Coordinate descent — Another formulation

® We will formulate algorithm differently for analysis
® Introduce coordinate-selection set

Cf ={y e R" :yy = x; for all | # 5}

i.e., y; = a; for all coordinates [ # j, only y; is free
® The coordinate descent update is, select j at random and:

e = argmin(f(«*) + Vf(2")" (y — ") + 5 lly — 2|3 + g(y) + togt (1))

’ 27k
= argmin(g(y) + 72— Iy — (=" — wVF(@))[3 + ter (1)
y g J

. k
= argmin (g;(y;) + 23 lys = (@5 =1V F(@n);)12)
Yy =)

B proxwkgj(y)(azf — v Vf(xF);) for coordinate j
y for all coordinates I # j
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Block-coordinate descent

® |et B be set of block of variables, e.g.,
® Overlapping blocks with each coordinate in K elements

B ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

requires single-coordinate separable g
® Nonoverlapping blocks

B = {{17 2}7 {374}7 {57 6}}
can have block-separable g
® Draw block j uniformly from B and define the set C'7 as before:
Ci={yeR":y =ux foralll ¢j}

i.e., y; = x; for all coordinates [ & j only block j is free
® The coordinate descent update is, select block j at random and:

2" = argmin(f(2") + V(@) (y = 2") + 7 ly = 2"1E + 9(0) + 100 )

_ prox%gj(y)(a:? — i Vf(xF);) for block j
xf for all coordinates | & j

where notation z; is vector of coordinates in j »



Expected value of residual

® For convergence, we will need! for some & > 0
E[llz"*! — ¥ |312*] = &|lprox,, o (zr — V[ (z1)) — 23 (2)

® For single-valued coordinate descent, it holds with £ = % proof:

2
2y = af[=0]

. :
Ef "t — 23" =D & || [prox,, g (@} %Vf( ")i) — =

=1 :
2kt — k(= 0] 2
- %Z [Prox,, g, ) (T — WV f(z ")) — a3
= %HpI'OX,ykg(y)({L' - kaf(xk)) - LU”%
Requires g to be separable!
® Similar thing (different constants) holds for block-coordinate
33
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We will analyze

We will analyze: for every k, draw j from distribution and update

2F = argmin(f(2%) + V()T (y — ) + i“y — "5+ g(y) + Losh (¥))

Y

= POy (zk — WV f(2"))

J
with randomized (block) coordinate descent as special case, where

¢ coordinate-selector '}’ depends on random variable j so that:

]E[HUUHI - x"H%Iwk] = fHPFOX%g(xk —Vf(zr)) — $k||§

for some & > 0 (satisfied for what have seen)
® g has separability structure compatible with C
® Optimality condition (consider g + ¢« as g):
J

0€ 09+ 1o ) (@) 49 1 (@M = (2% =V f(2F)))
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Assumptions for convergence

Essentially same assumptions and proof as for proximal gradient

(i) f:R™— R is continuously differentiable (not necessarily convex)
(i4) f is B-smooth, i.e., for all z,y € R™:

Fy) < f@) + V(@) (y - 2) + 5llz —yl3

111 :R” — RU {oo} closed convex (structure compatible with C'¥
9 J

)
(iv)
)
)

A minimizer exists
(v
(vi) CF where j is random variable and g are such that

® 2% e CF forall k

® E[l|lz"" — a*|[3|2"] = ¢llprox,,  (ex — vV f(zk)) — 2]
where £ > 0 and expectation is over random variable j

Algorithm parameters 7, € [¢, 5 — €], where € > 0

2
2
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A basic inequality

Using

(a) B-smoothness of f, i.e., Assumption (i)
(b) Prox optimality condition: There exists sx1 € O(g + ¢ . NEany

0= 4y @ — (@ =V f(zh))
(c) Subgradient, h = g + ok h(a*) > h(xF 1) + s, (aF — 2¥1)
K (2R = Lok (%) = 0):

it holds for every realization (since ¢
J

ot
F@h) 4+ g(@™h) = faH) + g(a" ) + Lot (")
a) < f(a*) + V(@) (@ —aF) + Sl — 2P + (9 + chk)(xk“)
o) < f(a*) + Vf(a")T(
+g(z*) + Losk e (2¥) = s (o
() = f(*) + V(@) (@ —a¥) + Gl —2¥)3
+ (") + 4, (@ = (@ = V()T (2 — 2
= f(@*) +9(=") + (= Dllz* T — 2F)3

)
l‘k k) + g|‘$k+1 _ xkng
k

J)k_H)
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Satisfies fixed-point characterization

Inequality identical to in proximal gradient method
For proximal gradient method

lz*+ = 2¥]|2 = f[prox,, o (z — WV f(zr)) — zxll2

hence fixed-point residual converges as consequence of inequality
Take expectation of inequality conditioned on z* to get that

E[f(@"h) + g(2*1)[a"]
< f@®) + g(@®) + (" — DIEFT — 2F|[3]2"]
(vi), (v) < f(a") + g(a*) = 8||prox,,  (wx — YV f(z1)) — x5

holds for the underlying stochastic process for some § > 0
This is almost supermartingale, Robbins-Siegmund implies

> dllprox,, (= V f(2*)) =23 < oo,
k=1

ie., |[prox,  (zF —Vf(2F)) —2¥||s = 0 as k — oo as.

’Ykg(
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Convergence summary

® Analyzed

k+1

et =prox, o (T — WV f ("))
ox

J

and showed [|prox.,, (¥ — vV f(2*)) — 2¥]] = 0 as.

® This implies that a.s. (conclusion in proximal gradient lecture):

Ag(z* ) + V(@) 3 v @k — rg1) + Vi (@rs1) — V(@) = 0

Uk

i.e., fixed-point characterization satisfied in limit

® Question: When is the algorithm efficient to implement?
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Efficient implementation

We consider 1-coordinate case (same applies to block setting)
g must be separable to be compatible with C7
The update is

& .
xj+1 = pI‘OX,ykgj (Jj_]; - Vkvf(xk)])

prox,, . efficient: 1D problem (often closed form solution)

Vf(z*);, i.e., element j of gradient:
® requires in general to compute full gradient, then pick element
® Will cover two cases when much cheaper
® Efficient if cost roughly % of full gradient cost
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Example — Efficient coordinate gradient evaluations

® Let f(z) = 32T Ha + KTz with H € R™*", then:
Vf(I)J = (HI)J + hj = (hjl, ey hjn)TI + hj

i.e. updated at cost % of full gradient (e.g., for dual SVM)
o Let Vf(x) = LT (o(Lx) — b) with L € R™*™ and o monotone

® Covers least squares and logistic regression
® Coordinate gradient

(Vf(x)); = (L"(o(La) —b)); = (L");(o(La) — b)

where (LT); € R™ is j:th row in LT
® Assume we know z = Ly at point y = (Z1,...,Z1,...,%n):

Lr=Ly+ L(x —y) =2+ Li(zi — y1)
where L; € R"™ is I:th row in L (note z; — y; scalar) and gradient
(VF(@)); = (LT)j(o(z + Li(zr — y)) = b)

can be updated at + and L of cost for the two steps
m n
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Convex case

® Assume, in addition to previous assumptions, that f is convex

® The following result can be shown to hold

A sequence (xy)ren converges a.s. to a fixed-point of

Tpg = prox,, ,(I — V)

if the following conditions hold almost surely:
(i) Hproxw(xk — YV f(xg)) —zk|]| > 0 as k — oo
(ii) (]lzx — 2||)ren converges for all z € fixTH

e Condition (i) already shown to hold for coordinate iteration
® Condition (ii) holds for convex problems (but not for nonconvex)

® Proof very similar to for proximal gradient method
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Individual step-lengths

Performance can be greatly improved with individual step-lengths
Coordinate descent on 3-smooth quadratic problem

minimize1 1 ' 0.1 =0.1) o
x 2 o 701 1 T2

Step—size parameter y; = 0%, Y2 = 1

Achieved by using tighter upper bound
Fy) < f@) + V@) (y —2) + 5llz — ylF

for some matrix H — next lecture
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Individual step-lengths

Performance can be greatly improved with individual step-lengths
Coordinate descent on 3-smooth quadratic problem

minimize1 1 ' 0.1 =0.1) o
x 2 o 701 1 T2

Step—size parameter y; = 0%, Y2 = 1

1

Achieved by using tighter upper bound
Fy) < f@) + V@) (y —2) + 5llz — ylF

for some matrix H — next lecture
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Numerical example

Same least squares construction as in stochastic example
Compares: gradient, coordinate, and scaled coordinate descent
x axis normalized for fair comparison, y-axis is function value
Scaled version much faster

GD

cb
CD Diagonal

2008

I
° vad 2x1d 3xd
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