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Learning goals

• Be able to derive subdifferential and proximal operator formulas

• Understand that subdifferentials define affine minorizors

• Existence of subgradient for convex functions

• Understand maximal monotonicity and Minty’s theorem

• Know strong monotonicity and relation to strong convexity

• Know different characterizations of smoothness

• Understand and be able to use Fermat’s rule

• Know subdifferential calculus rules

• Understand that prox evaluates subdifferential
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Subdifferentials
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Gradients of convex functions

• Recall: A differentiable function f : Rn → R is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

• What if function is nondifferentiable?
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Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

(s,−1)
(s,−1)

(s,−1)

• coincide with f at x
• define normal vector (s,−1) to epigraph of f
• can be one of many affine minorizers at nondifferentiable points x

• Subdifferential of f : Rn → R at x is set of vectors s satisfying

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn, (1)

• Notation:
• subdifferential: ∂f : Rn → 2R

n

(power-set notation 2R
n

)
• subdifferential at x: ∂f(x) = {s : (1) holds}
• elements s ∈ ∂f(x) are called subgradients of f at x
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Relation to gradient

• If f differentiable at x and ∂f(x) 6= ∅ then ∂f(x) = {∇f(x)}:

(s,−1)

x1

(∇f(x2),−1)

x2 (∇f(x3),−1)

x3

• i.e., subdifferential (if nonempty) at x consists of only gradient
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Subgradient existence – Nonconvex example

• Function can be differentiable at x but ∂f(x) = ∅

x1

x2
x3

• x1: ∂f(x1) = {0}, ∇f(x1) = 0
• x2: ∂f(x2) = ∅, ∇f(x2) = 0
• x3: ∂f(x3) = ∅, ∇f(x3) = 0

• Gradient is a local concept, subdifferential is a global property
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Subgradient existence – Convex example

• Consider the convex function:

x1

x2

x3

f(x) = |x|

• What are the subdifferentials at points x1, x2, x3?
• Subdifferential at x1 is -1 (affine minorizer with slope -1)
• Subdifferential at x2 is [-1,1] (affine minorizers with slope [-1,1])
• Subdifferential at x3 is 1 (affine minorizer with slope 1)

Fact:

• For finite-valued convex functions, a subgradient exists for every x
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Existence for extended-valued convex functions

• Let f : Rn → R ∪ {∞} be convex, then:

1. Subgradients exist for all x in relative interior of domf
2. Subgradients sometimes exist for x on boundary of domf
3. No subgradient exists for x outside domf

• Examples for second case, boundary points of domf :

−
√
1− x2 + ι[−1,1](x) x2 + ι[−2,2](x)

• No subgradient (affine minorizer) exists for left function at x = 1
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Monotonicity

• Subdifferential operator is monotone:

(sx − sy)T (x− y) ≥ 0

for all sx ∈ ∂f(x) and sy ∈ ∂f(y)
• Proof: Add two copies of subdifferential definition

f(y) ≥ f(x) + sTx (y − x)

with x and y swapped
• ∂f : R→ 2R: Minimum slope 0 and maximum slope ∞

∂f

x
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Monotonicity beyond subdifferentials

• Let A : Rn → 2R
n

be monotone, i.e.:

(u− v)T (x− y) ≥ 0

for all u ∈ Ax and v ∈ Ay

• If n = 1, then A = ∂f for some function f : R→ R ∪ {∞}
• If n ≥ 2 there exist monotone A that are not subdifferentials
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Maximal monotonicity

• Let the set gph ∂f := {(x, u) : u ∈ ∂f(x)} be the graph of ∂f

• ∂f is maximally monotone if no other function g exists with

gph ∂f ⊂ gph ∂g,

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone
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Minty’s theorem

• Let ∂f : Rn → 2R
n

and α > 0
• ∂f is maximally monotone if and only if range(αI + ∂f) = Rn

∂f1

x

maximally monotone

∂f2

x

not maximally monotone

∂f1 + αI

x

full range

∂f2 + αI

x

not full range

• Interpretation: No “holes” in gph ∂f
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Strong convexity

• Recall that f is σ-strongly convex if f − σ
2 ‖ · ‖

2
2 is convex

• If f is σ-strongly convex then

f(y) ≥ f(x) + sT (y − x) + σ
2 ‖x− y‖

2
2

holds for all x ∈ dom∂f , s ∈ ∂f(x), and y ∈ Rn
• The function has convex quadratic minorizers instead of affine

f(y)

f(x1) + sT1 (y − x1) + σ
2
‖x1 − y‖22x1

(s1,−1)

f(x2) + sT2,1(y − x2) +
σ
2
‖x2 − y‖22

(s2,1,−1)

f(x2) + sT2,2(y − x2) +
σ
2
‖x2 − y‖22

x2

(s2,2,−1)

• Multiple lower bounds at x2 with subgradients s2,1 and s2,2
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Strong monotonicity

• If f σ-strongly convex function, then ∂f is σ-strongly monotone:

(sx − sy)T (x− y) ≥ σ‖x− y‖22
for all sx ∈ ∂f(x) and sy ∈ ∂f(y)

• Proof: Add two copies of strong convexity inequality

f(y) ≥ f(x) + sTx (y − x) + σ
2 ‖x− y‖

2
2

with x and y swapped
• ∂f is σ-strongly monotone if and only if ∂f − σI is monotone
• ∂f : R→ 2R: Minimum slope σ and maximum slope ∞

∂f

x
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Strongly convex functions – An equivalence

The following are equivalent

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

Proof:

(i)⇒(ii): we know this from before
(ii)⇒(i): (ii) ⇒ ∂f − σI = ∂(f − σ

2 ‖ · ‖
2
2) maximally monotone

⇒ f − σ
2 ‖ · ‖

2
2 closed convex

⇒ f closed and σ-strongly convex

16



Smoothness and convexity

• A differentiable function f : Rn → R is convex and smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ‖x− y‖

2
2

f(y) ≥ f(x) +∇f(x)T (y − x)

holds for all x, y ∈ Rn
• f has convex quadratic majorizers and affine minorizers

f(x1) +∇f(x1)T (y − x1) + β
2
‖x1 − y‖22

x1

(∇f(x2),−1)

f(x2) +∇f(x2)T (y − x2) + β
2
‖x2 − y‖22

x2

(∇f(x2),−1)

f(y)

• Quadratic upper bound is called descent lemma 17



Gradient of smooth convex function

• Gradient of smooth convex function is monotone and Lipschitz

(∇f(x)−∇f(y))T (x− y) ≥ 0

‖∇f(y)−∇f(x)‖2 ≤ β‖x− y‖2

• ∇f : R→ R: Minimum slope 0 and maximum slope β

∇f

x

• Actually satisfies the stronger 1
β -cocoercivity property:

(∇f(x)−∇f(y))T (x− y) ≥ 1
β ‖∇f(y)−∇f(x)‖22
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Smooth convex functions – Equivalences

Let f : Rn → R be differentiable. The following are equivalent:

(i) ∇f is 1
β -cocoercive

(ii) ∇f is maximally monotone and β-Lipschitz continuous

(iii) f is closed convex and satisfies descent lemma (is β-smooth)

• Implication (ii)⇒(i) is called the Baillon-Haddad theorem

• Will connect smoothness and strong convexity via conjugates in next lecture
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Fermat’s rule

Let f : Rn → R ∪ {∞}, then x minimizes f if and only if

0 ∈ ∂f(x)

• Proof: x minimizes f if and only if

f(y) ≥ f(x) + 0T (y − x) for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)
• Example: several subgradients at solution, including 0

(0,−1)
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Fermat’s rule – Nonconvex example

• Fermat’s rule holds also for nonconvex functions

• Example:

x1
x2

(0,−1)

• ∂f(x1) = 0 and ∇f(x1) = 0 (global minimum)
• ∂f(x2) = ∅ and ∇f(x2) = 0 (local minimum)

• For nonconvex f , we can typically only hope to find local minima
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Subdifferential calculus rules

• Subdifferential of sum ∂(f1 + f2)

• Subdifferential of composition with matrix ∂(g ◦ L)
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Subdifferential of sum

If f1, f2 closed convex and relint domf1 ∩ relint domf2 6= ∅:
∂(f1 + f2) = ∂f1 + ∂f2

• One direction always holds: if x ∈ dom∂f1 ∩ dom∂f2:

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

Proof: let si ∈ ∂fi(x), add subdifferential definitions:

f1(y) + f2(y) ≥ f1(x) + f2(x) + (s1 + s2)T (y − x)

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• If f1 and f2 differentiable, we have (without convexity of f)

∇(f1 + f2) = ∇f1 +∇f2
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Subdifferential of composition

If f closed convex and relint dom(f ◦ L) 6= ∅:
∂(f ◦ L)(x) = LT∂f(Lx)

• One direction always holds: If Lx ∈ domf , then

∂(f ◦ L)(x) ⊇ LT∂f(Lx)

Proof: let s ∈ ∂f(Lx), then by definition of subgradient of f :

(f ◦ L)(y) ≥ (f ◦ L)(x) + sT (Ly − Lx) = (f ◦ L)(x) + (LT s)T (y − x)

i.e., LT s ∈ ∂(f ◦ L)(x)

• If f differentiable, we have chain rule (without convexity of f)

∇(f ◦ L)(x) = LT∇f(Lx)
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A sufficient optimality condition

Let f : Rm → R, g : Rn → R, and L ∈ Rm×n then:

minimize f(Lx) + g(x) (1)

is solved by every x ∈ Rn that satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus inclusions say:

0 ∈ LT∂f(Lx) + ∂g(x) ⊆ ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)
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A necessary and sufficient optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume relint dom(f ◦ L) ∩ relint domg 6= ∅ then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus equality rules say:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂((f ◦ L)(x) + g(x))

which by Fermat’s rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy 0 ∈ LT∂f(Lx) + ∂g(x)

26



A comment to constraint qualification

• The condition

relint dom(f ◦ L) ∩ relint domg 6= ∅

is called constraint qualification and referred to as CQ

• It is a mild condition that rarely is not satisfied

dom(f ◦ L)

domg

no solution

dom(f ◦ L)

domg

solution
no CQ

dom(f ◦ L)

domg

solution
CQ
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Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

0 ∈ LT∂f(Lx) + ∂g(x)

• Explicit evaluation:
• If function is differentiable: ∇f (unique)
• If function is nondifferentiable: compute element in ∂f

• Implicit evaluation:
• Proximal operator (specific element of subdifferential)
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Proximal operators
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Proximal operator

• Proximal operator of (convex) g defined as:

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

where γ > 0 is a parameter

• Evaluating prox requires solving optimization problem

• Objective is strongly convex ⇒ solution exists and is unique
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Prox evaluates the subdifferential

• Fermat’s rule on prox definition: x = proxγg(z) if and only if

0 ∈ ∂g(x) + γ−1(x− z) ⇔ γ−1(z − x) ∈ ∂g(x)

Hence, γ−1(z − x) is element in ∂g(x)

• A subgradient ∂g(x) where x = proxγg(z) is computed

• Often used in algorithms when g nonsmooth (no gradient exists)
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Prox is generalization of projection

• Recall the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C
∞ otherwise

• Then

ΠC(z) = argmin
x

(‖x− z‖2 : x ∈ C)

= argmin
x

( 1
2‖x− z‖

2
2 : x ∈ C)

= argmin
x

( 1
2‖x− z‖

2
2 + ιC(x))

= proxιC (z)

• Projection onto C equals prox of indicator function of C
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Proximal operator – Example 1

Let g(x) = 1
2x

THx+ hTx with H positive semidefinite

• Gradient satisfies ∇g(x) = Hx+ h

• Fermat’s rule for x = proxγgz:

0 = ∇g(x) + γ−1(x− z) ⇔ 0 = Hx+ h+ γ−1(x− z)
⇔ (I + γH)x = z − γh
⇔ x = (I + γH)−1(z − γh)

• So proxγgz = (I + γH)−1(z − γh)
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Proximal operator – Example 2

• Consider the function g with subdifferential ∂g:

g(x) =

{
−x if x ≤ 0

0 if x ≥ 0
∂g(x) =


−1 if x < 0

[−1, 0] if x = 0

0 if x > 0

• Graphical representations

(−1,−1)

(−1,−1)
(−0.5,−1) (0,−1) (0,−1)

g(x)

x

∂g(x)

x

• Fermat’s rule for x = proxγgz:

0 ∈ ∂g(x) + γ−1(x− z)
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Proximal operator – Example 2 cont’d

• Let x < 0, then Fermat’s rule reads

0 = −1 + γ−1(x− z) ⇔ x = z + γ

which is valid (x < 0) if z < −γ
• Let x = 0, then Fermat’s rule reads

0 = [−1, 0] + γ−1(0− z)

which is valid (x = 0) if z ∈ [−γ, 0]
• Let x > 0, then Fermat’s rule reads

0 = 0 + γ−1(x− z) ⇔ x = z

which is valid (x > 0) if z > 0
• The prox satisfies

proxγg(z) =


z + γ if z < −γ
0 if z ∈ [−γ, 0]

z if z > 0
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Computational cost

• Evaluating prox requires solving optimization problem

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖

2
2)

• Prox typically more expensive to evaluate than gradient

• Example: Quadratic g(x) = 1
2x

THx+ hTx:

proxγg(z) = (I + γH)−1(z − γh), ∇g(z) = Hz − h
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