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Learning goals

Be able to derive subdifferential and proximal operator formulas
Understand that subdifferentials define affine minorizors
Existence of subgradient for convex functions

Understand maximal monotonicity and Minty's theorem

Know strong monotonicity and relation to strong convexity
Know different characterizations of smoothness

Understand and be able to use Fermat's rule

Know subdifferential calculus rules

Understand that prox evaluates subdifferential



Subdifferentials



Gradients of convex functions

® Recall: A differentiable function f : R™ — R is convex iff
fy) = fa) + V(@) (y - 2)
for all z,y € R

(Vi(z), 1)

® Function f has for all x € R™ an affine minorizer that:
® has slope s defined by V f
® coincides with function f at =
® defines normal (V f(x),—1) to epigraph of f

® What if function is nondifferentiable?



Subdifferentials and subgradients

® Subgradients s define affine minorizers to the function that:

® coincide with f at x
® define normal vector (s, —1) to epigraph of f
® can be one of many affine minorizers at nondifferentiable points z

® Subdifferential of f : R” — R at z is set of vectors s satisfying

fly) = f(z) +s"(y—2) forallyeR", (1)
® Notation:
® subdifferential: &f : R™ — 2% (power-set notation 2%")
® subdifferential at z: df(z) = {s: (1) holds}
® clements s € 9f(z) are called subgradients of f at x



Relation to gradient

o If f differentiable at = and df(x) # 0 then 9f(x) = {V f(x)}:

(Vf(zg), —1)

S (VF(zg). —1)

® i.e., subdifferential (if nonempty) at z consists of only gradient



Subgradient existence — Nonconvex example

® Function can be differentiable at = but df(z) =0

z2

® z1: Of(x1) = {0}, Vf(z1) =0
® x2: Of(w2) =0, Vf(x2) =0
® x3: Of(x3) =0, Vf(xzs) =0

® Gradient is a local concept, subdifferential is a global property



Subgradient existence — Convex example

® Consider the convex function:

f(z) = |=|

® \What are the subdifferentials at points =1, x5, 37

® Subdifferential at z; is -1 (affine minorizer with slope -1)
® Subdifferential at 2 is [-1,1] (affine minorizers with slope [-1,1])
® Subdifferential at x5 is 1 (affine minorizer with slope 1)

Fact:

® For finite-valued convex functions, a subgradient exists for every x



Existence for extended-valued convex functions

® let f : R® - RU{oo} be convex, then:

1. Subgradients exist for all x in relative interior of dom f
2. Subgradients sometimes exist for = on boundary of dom f
3. No subgradient exists for = outside dom f

® Examples for second case, boundary points of domf:

—V1—z2+ t(=1,1]()

® No subgradient (affine minorizer) exists for left function at z =1



Monotonicity

® Subdifferential operator is monotone:
(52— sy) " (x—9y) >0

for all s, € Of(x) and s, € Of(y)
® Proof: Add two copies of subdifferential definition

fy) > flz)+ 55 (y —x)

with x and y swapped
® Jf : R — 2% Minimum slope 0 and maximum slope oo

of
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Monotonicity beyond subdifferentials

e |et A:R™ — 28" be monotone, i.e.:

(u—v)"(z—y)>0

for all u € Az and v € Ay

® Ifn=1, then A = 9f for some function f : R — RU {cc}

® |f n > 2 there exist monotone A that are not subdifferentials
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Maximal monotonicity

® et the set gph0f := {(z,u) : u € df(x)} be the graph of Of
® Jf is maximally monotone if no other function g exists with

gphdf C gph g,

with strict inclusion
® A result (due to Rockafellar):

’ f is closed convex if and only if Jf is maximally monotone
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Minty’s theorem

o let 0f : R" —» 28" and o > 0
® Jf is maximally monotone if and only if range(al 4+ 9f) = R

8f1 8f2
maximally monotone not maximally monotone
0f1 +al Ofa + al (
T J x

! _

full range not full range

® |nterpretation: No “holes” in gph df
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Strong convexity

® Recall that f is o-strongly convex if f — & - |3 is convex
® |f f is o-strongly convex then

fly) = fa) +s"(y —2) + §llz — yll3

holds for all z € domdf, s € df(x), and y € R™
® The function has convex quadratic minorizers instead of affine

()
f(x2) + 83 5(y — x2) + Sllz2 — yll3

f(x2) + 53 1 (y — w2) + §llvz — yll3

fla) +s{ (y —21) + Gl — w3

® Multiple lower bounds at x5 with subgradients s3 1 and s 2
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Strong monotonicity

If f o-strongly convex function, then Of is o-strongly monotone:
(50 = sy) " (x —y) 2 ollz —yl3
for all s, € Of(x) and s, € Of(y)
Proof: Add two copies of strong convexity inequality
Fy) > f2) + 55 (y — ) + Gl — yll3

with x and y swapped
df is o-strongly monotone if and only if f — oI is monotone
df : R — 2%: Minimum slope o and maximum slope oo

of
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Strongly convex functions — An equivalence

The following are equivalent

(i) f is closed and o-strongly convex

(i) Of is maximally monotone and o-strongly monotone

Proof:

(i)=(ii): we know this from before

(i)=(@): (i) =90f —ol =0(f—%| -13) maximally monotone
= f— g |3 closed convex
= f closed and o-strongly convex
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Smoothness and convexity

® A differentiable function f : R™ — R is convex and smooth if
fly) < f@)+ V@) (y—2) + Sl — yll3
fly) = f@) + V(@) (y - 2)

holds for all z,y € R"
® { has convex quadratic majorizers and affine minorizers

| F@) + V@) (y —21) + 5lle1 — yli3
) fx2) + V()T (y — 22) + Zlz2 — yll3

(Vf(z2), —1)

(Vf(w2), —1)

® Quadratic upper bound is called descent lemma
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Gradient of smooth convex function

® Gradient of smooth convex function is monotone and Lipschitz
(V@) =V f(y) (z—y) >0
IVf(y) = VI@)l2 < Bllz -yl
® Vf:R — R: Minimum slope 0 and maximum slope 3

Vf

/ ‘ x
® Actually satisfies the stronger %—cocoercivity property:

(Vf(z) = Vi) (@ —y) = 5IIVFy) - V()3
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Smooth convex functions — Equivalences

Let f: R™ — R be differentiable. The following are equivalent:

(i) Vfis g-cocoercive
(i) Vf is maximally monotone and S-Lipschitz continuous
(i) f is closed convex and satisfies descent lemma (is 3-smooth)

® Implication (ii)=>(i) is called the Baillon-Haddad theorem

® Will connect smoothness and strong convexity via conjugates in next lecture
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Fermat’s rule

Let f: R™ — RU {oo}, then 2 minimizes f if and only if
0€df(x)

® Proof: x minimizes f if and only if
fy) = f(z)+0"(y—x) forally e R

which by definition of subdifferential is equivalent to 0 € df(z)
® Example: several subgradients at solution, including 0

"

(0,—1)
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Fermat’s rule — Nonconvex example

® Fermat's rule holds also for nonconvex functions

® Example:

T2
!

(0, 1)

® Of(x1) =0 and Vf(z1) =0 (global minimum)
® 9f(z2) =0 and Vf(z2) = 0 (local minimum)

® For nonconvex f, we can typically only hope to find local minima
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Subdifferential calculus rules

e Subdifferential of sum 9(f; + f2)
® Subdifferential of composition with matrix d(g o L)
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Subdifferential of sum

If f1, f2 closed convex and relint dom f; N relint dom fo # 0:
O(f1+ fo) = 0f1 +0f2

® One direction always holds: if € domdf; N domd fs:
fi+ f2)(x) 2 0f1(x) + O fa(z)
Proof: let s; € 0f;(x), add subdifferential definitions:
i)+ fa(y) = fr(@) + fa(z) + (s1 4 52)" (y — )

i.e. s1+ 89 € 8(f1 + fg)(l‘)
e If f; and f5 differentiable, we have (without convexity of f)

V(fi+fo)=Vfi+Vfo
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Subdifferential of composition

If f closed convex and relint dom(f o L) # 0:
O(folL)(x)=LT0f(Lx)

® One direction always holds: If Lz € domf, then
(foL)(z)2 LTof(Lx)
Proof: let s € 9f(Lx), then by definition of subgradient of f:
(foL)(y) = (f o L)(x) + s"(Ly — La) = (f o L)(x) + (LTs)" (y — )

ie, LTs € 0(foL)(x)

e If f differentiable, we have chain rule (without convexity of f)

V(foL)(z)=L"Vf(Lx)
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A sufficient optimality condition

Let f:R™ - R, g:R"” — R, and L € R™*™ then:
minimize f(Lz) + g(z)
is solved by every z € R™ that satisfies

0c LTof(Lx) + dg(x)

® Subdifferential calculus inclusions say:
0 € LTOf(Lx) +dg(x) C O((f o L)(z) + g())

which by Fermat's rule is equivalent to x solution to (1)

® Note: (1) can have solution but no z exists that satisfies (2)
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A necessary and sufficient optimality condition

Let f:R™ = R, g:R* = R, L € R™*" with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:

minimize f(Lz) + g(z) (1)
is solved by « € R™ if and only if x satisfies

0 LTof(Lx) + dg(x) (2)

® Subdifferential calculus equality rules say:
0 € LT9f(La) + dg(x) = ((f o L)(x) + g())

which by Fermat's rule is equivalent to x solution to (1)
® Algorithms search for z that satisfy 0 € LT0f(Lx) + dg(x)
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A comment to constraint qualification

® The condition
relint dom(f o L) N relint domg # 0

is called constraint qualification and referred to as CQ
® |t is a mild condition that rarely is not satisfied

—
no solution solution solution
no CQ cQ
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Evaluating subgradients of convex functions

® Obviously need to evaluate subdifferentials to solve
0¢€ LTof(Lx) + 0g(x)

® Explicit evaluation:

® |f function is differentiable: V f (unique)
® |f function is nondifferentiable: compute element in 9 f

® Implicit evaluation:
® Proximal operator (specific element of subdifferential)
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Proximal operators
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Proximal operator

® Proximal operator of (convex) g defined as:
prox,,(z) = argmin(g(x) + 55 [lv — 2|3
x
where v > 0 is a parameter

® Evaluating prox requires solving optimization problem

® Objective is strongly convex = solution exists and is unique
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Prox evaluates the subdifferential

® Fermat’s rule on prox definition: = = prox. (2) if and only if
0cag(z)+y Hz—2) & ~ Hz—2x)ecdgx)

Hence, v~ 1(z — z) is element in dg(z)
® A subgradient dg(z) where z = prox, () is computed

® Often used in algorithms when g nonsmooth (no gradient exists)
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Prox is generalization of projection

® Recall the indicator function of a set C'

o) = {O ifxeC

0o otherwise
® Then
Mo (z) = argmin(||z — z|j2 : x € C)

x

= argmin(i|jz — 2|3 1 2 € O)
x

= argmin(}llz — 2I3 + 1c(2))

= prox, ., (z)

® Projection onto C' equals prox of indicator function of C'
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Proximal operator — Example 1

Let g(z) = 22T Hx + hTx with H positive semidefinite
® Gradient satisfies Vg(x) = Hx + h
® Fermat’s rule for = prox z:
0=Vg(@)+y (w—2) & O0=Hr+h+y '(z-2)
< {[+vH)r=z—~vh
& x=(I+~yH) (2 —~h)

® So prox,,z = (I +~vH) ' (z —~h)
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Proximal operator — Example 2

® Consider the function g with subdifferential dg:

£ 2 <0 -1 ifr <0
—x ifx
g9(x) {0 >0 g9(z) = { [-1,0] iz =0
0 ifx>0
® Graphical representations
9(z)
9g(z)

(=1, -1)

(71.71)»(; i [EE—
(=0.5,-1) (o, —1) (0, =1)

® Fermat’s rule for z = prox, z:

0€dg(z) +v 1z —2)
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Proximal operator — Example 2 cont’d

Let x < 0, then Fermat’s rule reads
0=—-1+y z—2) & z=z2+7
which is valid (z < 0) if z < —v
Let z = 0, then Fermat's rule reads
0=[-1,0[+~""(0—2)
which is valid (z = 0) if z € [—~,0]
Let z > 0, then Fermat's rule reads
0=0+711z—-2) & x==2
which is valid (x > 0) if 2> 0
The prox satisfies
z+v fz<—y
prox,,(z) =40 if z € [—,0]
z if z>0
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Computational cost

® Evaluating prox requires solving optimization problem
Prox,,(2) = argmin(g(z) + ol —2|3)

® Prox typically more expensive to evaluate than gradient

® Example: Quadratic g(z) = 22T Hz + ha:

prox. ., (z) = (I + yH) (2 — ~h), Vy(z) =Hz—h
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