Subdifferentials and Proximal Operators

Pontus Giselsson

Learning goals

- Be able to derive subdifferential and proximal operator formulas
- Understand that subdifferentials define affine minorizors
- Existence of subgradient for convex functions
- Understand maximal monotonicity and Minty's theorem
- Know strong monotonicity and relation to strong convexity
- Know different characterizations of smoothness
- Understand and be able to use Fermat's rule
- Know subdifferential calculus rules
- Understand that prox evaluates subdifferential

Subdifferentials

Gradients of convex functions

• Recall: A differentiable function $f~:~\mathbb{R}^n\to\mathbb{R}$ is convex iff $f(y)\geq f(x)+\nabla f(x)^T(y-x)$

for all $x, y \in \mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f
- What if function is nondifferentiable?

Subdifferentials and subgradients

• Subgradients *s* define affine minorizers to the function that:

- $\bullet \,$ coincide with f at x
- define normal vector $(\boldsymbol{s},-1)$ to epigraph of f
- ${\ensuremath{\, \bullet }}$ can be one of many affine minorizers at nondifferentiable points x
- Subdifferential of $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ at x is set of vectors s satisfying

$$f(y) \ge f(x) + s^T(y - x) \quad \text{for all } y \in \mathbb{R}^n, \tag{1}$$

- Notation:
 - subdifferential: $\partial f : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ (power-set notation $2^{\mathbb{R}^n}$)
 - subdifferential at x: $\partial f(x) = \{s : (1) \text{ holds}\}$
 - elements $s \in \partial f(x)$ are called *subgradients* of f at x

Relation to gradient

• If f differentiable at x and $\partial f(x) \neq \emptyset$ then $\partial f(x) = \{\nabla f(x)\}$:

• i.e., subdifferential (if nonempty) at x consists of only gradient

Subgradient existence – Nonconvex example

• Function can be differentiable at x but $\partial f(x) = \emptyset$

•
$$x_1: \partial f(x_1) = \{0\}, \nabla f(x_1) = 0$$

- x_2 : $\partial f(x_2) = \emptyset$, $\nabla f(x_2) = 0$
- $x_3: \partial f(x_3) = \emptyset, \nabla f(x_3) = 0$
- Gradient is a local concept, subdifferential is a global property

Subgradient existence – Convex example

• Consider the convex function:

- What are the subdifferentials at points x_1 , x_2 , x_3 ?
 - Subdifferential at x_1 is -1 (affine minorizer with slope -1)
 - Subdifferential at x₂ is [-1,1] (affine minorizers with slope [-1,1])
 - Subdifferential at x_3 is 1 (affine minorizer with slope 1)

Fact:

• For *finite-valued* convex functions, a subgradient exists for every x

Existence for extended-valued convex functions

- Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex, then:
 - 1. Subgradients exist for all x in relative interior of $\operatorname{dom} f$
 - 2. Subgradients sometimes exist for x on boundary of $\operatorname{dom} f$
 - 3. No subgradient exists for x outside $\operatorname{dom} f$
- Examples for second case, boundary points of domf:

• No subgradient (affine minorizer) exists for left function at x = 1

Monotonicity

• Subdifferential operator is monotone:

$$(s_x - s_y)^T (x - y) \ge 0$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

• Proof: Add two copies of subdifferential definition

$$f(y) \ge f(x) + s_x^T(y - x)$$

with x and y swapped

• $\partial f: \mathbb{R} \to 2^{\mathbb{R}}$: Minimum slope 0 and maximum slope ∞

Monotonicity beyond subdifferentials

• Let $A: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be monotone, i.e.:

$$(u-v)^T(x-y) \ge 0$$

for all $u \in Ax$ and $v \in Ay$

- If n = 1, then $A = \partial f$ for some function $f : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$
- If $n \ge 2$ there exist monotone A that are not subdifferentials

Maximal monotonicity

- Let the set ${\rm gph}\,\partial f:=\{(x,u): u\in\partial f(x)\}$ be the graph of ∂f
- ∂f is maximally monotone if no other function g exists with

 $\operatorname{gph} \partial f \subset \operatorname{gph} \partial g,$

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone

Minty's theorem

- Let $\partial f:\mathbb{R}^n\to 2^{\mathbb{R}^n}$ and $\alpha>0$
- ∂f is maximally monotone if and only if $\operatorname{range}(\alpha I + \partial f) = \mathbb{R}^n$

not maximally monotone

• Interpretation: No "holes" in ${\rm gph}\,\partial f$

Strong convexity

- Recall that f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- If f is σ -strongly convex then

$$f(y) \ge f(x) + s^T(y-x) + \frac{\sigma}{2} ||x-y||_2^2$$

holds for all $x\in {\rm dom}\partial f$, $s\in \partial f(x),$ and $y\in \mathbb{R}^n$

• The function has convex quadratic minorizers instead of affine

• Multiple lower bounds at x_2 with subgradients $s_{2,1}$ and $s_{2,2}$

Strong monotonicity

• If f σ -strongly convex function, then ∂f is σ -strongly monotone:

$$(s_x - s_y)^T (x - y) \ge \sigma ||x - y||_2^2$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

· Proof: Add two copies of strong convexity inequality

$$f(y) \ge f(x) + s_x^T(y-x) + \frac{\sigma}{2} ||x-y||_2^2$$

with x and y swapped

- ∂f is σ -strongly monotone if and only if $\partial f \sigma I$ is monotone
- $\partial f: \mathbb{R} \to 2^{\mathbb{R}}$: Minimum slope σ and maximum slope ∞

Strongly convex functions – An equivalence

The following are equivalent

- (i) f is closed and σ -strongly convex
- (ii) ∂f is maximally monotone and σ -strongly monotone

Proof:

 $\begin{array}{ll} (\mathbf{i}) \Rightarrow (\mathbf{ii}): \text{ we know this from before} \\ (\mathbf{ii}) \Rightarrow (\mathbf{i}): & (\mathbf{ii}) & \Rightarrow \partial f - \sigma I = \partial (f - \frac{\sigma}{2} \| \cdot \|_2^2) \text{ maximally monotone} \\ & \Rightarrow f - \frac{\sigma}{2} \| \cdot \|_2^2 \text{ closed convex} \\ & \Rightarrow f \text{ closed and } \sigma \text{-strongly convex} \end{array}$

Smoothness and convexity

• A differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is convex and smooth if $\begin{aligned} f(y) &\leq f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} \|x-y\|_2^2 \\ f(y) &\geq f(x) + \nabla f(x)^T (y-x) \end{aligned}$

holds for all $x,y\in\mathbb{R}^n$

• f has convex quadratic majorizers and affine minorizers

• Quadratic upper bound is called *descent lemma*

Gradient of smooth convex function

• Gradient of smooth convex function is monotone and Lipschitz

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$
$$\|\nabla f(y) - \nabla f(x)\|_2 \le \beta \|x - y\|_2$$

• $\nabla f: \mathbb{R} \to \mathbb{R}$: Minimum slope 0 and maximum slope β

• Actually satisfies the stronger $\frac{1}{\beta}$ -cocoercivity property:

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta} \|\nabla f(y) - \nabla f(x)\|_2^2$$

Smooth convex functions – Equivalences

- Let $f:\mathbb{R}^n \to \mathbb{R}$ be differentiable. The following are equivalent:
 - (i) ∇f is $\frac{1}{\beta}$ -cocoercive
- (ii) ∇f is maximally monotone and β -Lipschitz continuous
- (iii) f is closed convex and satisfies descent lemma (is β -smooth)

- Implication (ii) \Rightarrow (i) is called the Baillon-Haddad theorem
- Will connect smoothness and strong convexity via conjugates in next lecture

Fermat's rule

Let $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\},$ then x minimizes f if and only if $0\in\partial f(x)$

• Proof: x minimizes f if and only if

$$f(y) \ge f(x) + 0^T (y - x)$$
 for all $y \in \mathbb{R}^n$

which by definition of subdifferential is equivalent to $0 \in \partial f(x)$

• Example: several subgradients at solution, including 0

Fermat's rule – Nonconvex example

- Fermat's rule holds also for nonconvex functions
- Example:

- $\partial f(x_1) = 0$ and $\nabla f(x_1) = 0$ (global minimum)
- $\partial f(x_2) = \emptyset$ and $\nabla f(x_2) = 0$ (local minimum)
- For nonconvex f, we can typically only hope to find local minima

Subdifferential calculus rules

- Subdifferential of sum $\partial(f_1 + f_2)$
- Subdifferential of composition with matrix $\partial(g \circ L)$

Subdifferential of sum

If f_1, f_2 closed convex and relint $\operatorname{dom} f_1 \cap \operatorname{relint} \operatorname{dom} f_2 \neq \emptyset$: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$

• One direction always holds: if $x \in \text{dom}\partial f_1 \cap \text{dom}\partial f_2$:

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

Proof: let $s_i \in \partial f_i(x)$, add subdifferential definitions:

$$f_1(y) + f_2(y) \ge f_1(x) + f_2(x) + (s_1 + s_2)^T (y - x)$$

i.e. $s_1 + s_2 \in \partial (f_1 + f_2)(x)$

• If f_1 and f_2 differentiable, we have (without convexity of f)

$$\nabla(f_1 + f_2) = \nabla f_1 + \nabla f_2$$

Subdifferential of composition

If f closed convex and relint dom $(f \circ L) \neq \emptyset$: $\partial (f \circ L)(x) = L^T \partial f(Lx)$

• One direction always holds: If $Lx \in \operatorname{dom} f$, then

$$\partial (f \circ L)(x) \supseteq L^T \partial f(Lx)$$

Proof: let $s \in \partial f(Lx)$, then by definition of subgradient of f:

 $(f \circ L)(y) \ge (f \circ L)(x) + s^T (Ly - Lx) = (f \circ L)(x) + (L^T s)^T (y - x)$

i.e., $L^T s \in \partial (f \circ L)(x)$

• If f differentiable, we have chain rule (without convexity of f)

$$\nabla (f \circ L)(x) = L^T \nabla f(Lx)$$

A sufficient optimality condition

Let
$$f : \mathbb{R}^m \to \overline{\mathbb{R}}, g : \mathbb{R}^n \to \overline{\mathbb{R}}, \text{ and } L \in \mathbb{R}^{m \times n}$$
 then:
minimize $f(Lx) + g(x)$ (1)
is solved by every $x \in \mathbb{R}^n$ that satisfies
 $0 \in L^T \partial f(Lx) + \partial g(x)$ (2)

• Subdifferential calculus inclusions say:

$$0 \in L^T \partial f(Lx) + \partial g(x) \subseteq \partial((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)

A necessary and sufficient optimality condition

Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}, g : \mathbb{R}^n \to \overline{\mathbb{R}}, L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume relint $\operatorname{dom}(f \circ L) \cap \operatorname{relint} \operatorname{dom} g \neq \emptyset$ then:

minimize
$$f(Lx) + g(x)$$
 (1)

is solved by $x \in \mathbb{R}^n$ if and only if x satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

• Subdifferential calculus equality rules say:

$$0 \in L^T \partial f(Lx) + \partial g(x) = \partial((f \circ L)(x) + g(x))$$

which by Fermat's rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy $0 \in L^T \partial f(Lx) + \partial g(x)$

A comment to constraint qualification

• The condition

```
\operatorname{relint}\operatorname{dom}(f\circ L)\cap\operatorname{relint}\operatorname{dom} g\neq \emptyset
```

is called *constraint qualification* and referred to as CQ

• It is a mild condition that rarely is not satisfied

Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

- Explicit evaluation:
 - If function is differentiable: ∇f (unique)
 - If function is nondifferentiable: compute element in ∂f
- Implicit evaluation:
 - Proximal operator (specific element of subdifferential)

Proximal operators

Proximal operator

• Proximal operator of (convex) g defined as:

$$\operatorname{prox}_{\gamma g}(z) = \operatorname{argmin}_{x}(g(x) + \frac{1}{2\gamma} ||x - z||_{2}^{2})$$

where $\gamma>0$ is a parameter

- Evaluating prox requires solving optimization problem
- Objective is strongly convex \Rightarrow solution exists and is unique

Prox evaluates the subdifferential

• Fermat's rule on prox definition: $x = prox_{\gamma g}(z)$ if and only if

$$0 \in \partial g(x) + \gamma^{-1}(x-z) \quad \Leftrightarrow \quad \gamma^{-1}(z-x) \in \partial g(x)$$

Hence, $\gamma^{-1}(z-x)$ is element in $\partial g(x)$

- A subgradient $\partial g(x)$ where $x = \text{prox}_{\gamma g}(z)$ is computed
- Often used in algorithms when g nonsmooth (no gradient exists)

Prox is generalization of projection

 $\bullet\,$ Recall the indicator function of a set C

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}$$

• Then

$$\Pi_{C}(z) = \underset{x}{\operatorname{argmin}} (\|x - z\|_{2} : x \in C)$$

= $\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} : x \in C)$
= $\underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} + \iota_{C}(x))$
= $\operatorname{prox}_{\iota_{C}}(z)$

• Projection onto C equals prox of indicator function of C

Proximal operator – Example 1

Let $g(x) = \frac{1}{2}x^THx + h^Tx$ with H positive semidefinite

- Gradient satisfies $\nabla g(x) = Hx + h$
- Fermat's rule for $x = prox_{\gamma g} z$:

$$0 = \nabla g(x) + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad 0 = Hx + h + \gamma^{-1}(x - z)$$
$$\Leftrightarrow \quad (I + \gamma H)x = z - \gamma h$$
$$\Leftrightarrow \quad x = (I + \gamma H)^{-1}(z - \gamma h)$$

• So $\operatorname{prox}_{\gamma g} z = (I + \gamma H)^{-1} (z - \gamma h)$

Proximal operator – Example 2

• Consider the function g with subdifferential ∂g :

$$g(x) = \begin{cases} -x & \text{if } x \le 0\\ 0 & \text{if } x \ge 0 \end{cases} \qquad \partial g(x) = \begin{cases} -1 & \text{if } x < 0\\ [-1,0] & \text{if } x = 0\\ 0 & \text{if } x > 0 \end{cases}$$

• Graphical representations

• Fermat's rule for $x = prox_{\gamma g} z$:

$$0 \in \partial g(x) + \gamma^{-1}(x-z)$$

Proximal operator – Example 2 cont'd

• Let x < 0, then Fermat's rule reads

$$0 = -1 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z + \gamma$$

which is valid (x<0) if $z<-\gamma$

• Let x = 0, then Fermat's rule reads

$$0 = [-1, 0] + \gamma^{-1}(0 - z)$$

which is valid (x=0) if $z\in [-\gamma,0]$

• Let x > 0, then Fermat's rule reads

$$0 = 0 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z$$

which is valid (x > 0) if z > 0

The prox satisfies

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z < -\gamma \\ 0 & \text{if } z \in [-\gamma, 0] \\ z & \text{if } z > 0 \end{cases}$$

Computational cost

• Evaluating prox requires solving optimization problem

$$\operatorname{prox}_{\gamma g}(z) = \operatorname*{argmin}_{x}(g(x) + \frac{1}{2\gamma} ||x - z||_{2}^{2})$$

- Prox typically more expensive to evaluate than gradient
- Example: Quadratic $g(x) = \frac{1}{2}x^THx + h^Tx$:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma H)^{-1} (z - \gamma h), \qquad \nabla g(z) = Hz - h$$