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Learning goals

• Understand the support vector machine classifier and its purpose

• Understand generalization and overfitting to training data

• Understand and be able to derive the dual SVM formulation

• Be able to predict class beloning from dual solution

• Familiar with the Kernels and how they relate to feature maps

• Know how SVM kernel methods rely on dual SVM formulation

2



Binary classification

• Labels y = 0 or y = 1 (alternatively y = −1 or y = 1)

• Training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• Design loss L to train model parameters θ such that:
• m(xi; θ) < 0 for pairs (xi, yi) where yi = 0
• m(xi; θ) > 0 for pairs (xi, yi) where yi = 1

• Predict class belonging for new data points x with trained θ̄:
• m(x; θ̄) < 0 predict class y = 0
• m(x; θ̄) > 0 predict class y = 1
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = log(1 + eu)− yu (logistic loss)

m(x; θ)

L(m(x; θ), 1)
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

nonconvex (Neyman Pearson loss)

m(x; θ)

L(m(x; θ), 1)

4



Binary classification – Cost functions

• Different cost functions L can be used:
• y = 0: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ), 0)

L(u, y) = max(0, u)− yu

m(x; θ)

L(m(x; θ), 1)
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1− yu) (hinge loss used in SVM)

m(x; θ)

L(m(x; θ), 1)
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Binary classification – Cost functions

• Different cost functions L can be used:
• y = −1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0
• y = 1: Small cost for m(x; θ)� 0 large for m(x; θ)� 0

m(x; θ)

L(m(x; θ),−1)

L(u, y) = max(0, 1− yu)2 (squared hinge loss)

m(x; θ)

L(m(x; θ), 1)
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SVM – Training problem

• SVM uses hinge loss and affine model m(x; θ) = wTx+ b
• Training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi) =

N∑
i=1

max(0, 1− yi(wTxi + b))

• Convex: L convex in first argument and model affine
• There is 0 cost for sample i if:

• label yi = −1 and model output ui = m(xi; θ) ≤ −1
• label yi = 1 and model output ui = m(xi; θ) ≥ 1

u

L(u,−1)

u

L(u, 1)

• “Searches for correct labeling with margin”
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Margin classification and support vectors

• Support vector machine classifiers for separable data
• Classes separated with margin, marks support vectors
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SVM – Prediction

• Assume we have trained model m(x; θ) and want to predict label

• Predict for new data point x:
• label yi = −1 if ui = m(xi; θ) = wTxi + b < 0
• label yi = 1 if ui = m(xi; θ) = wTxi + b > 0
• either label if ui = m(xi; θ) = wTxi + b = 0

• Therefore, the hyperplane (decision boundary)

H := {x : wTx+ b = 0}

separates class predictions
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Nonlinear example

• Can classify nonlinearly separable data using lifting
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Adding features

• Create feature map φ : Rn → Rp of training data

• Data points xi ∈ Rn replaced by featured data points φ(xi) ∈ Rp

• Example: Polynomial feature map with n = 2 and degree d = 3

φ(x) = (x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2)

• Number of features p+ 1 =
(
n+d
d

)
= (n+d)!

d!n! grows fast!

• SVM training problem

minimize
θ

N∑
i=1

max(0, 1− yi(wTφ(xi) + b))

still convex since features fixed
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Nonlinear example

SVM and polynomial features of degree 2
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Nonlinear example

SVM and polynomial features of degree 3
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Nonlinear example

SVM and polynomial features of degree 4
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Nonlinear example

SVM and polynomial features of degree 5
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Nonlinear example

SVM and polynomial features of degree 6
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Nonlinear example

SVM and polynomial features of degree 7
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Nonlinear example

SVM and polynomial features of degree 8
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Nonlinear example

SVM and polynomial features of degree 9
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Nonlinear example

SVM and polynomial features of degree 10
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Overfitting and regularization

• Also SVM is prone to overfitting if model too expressive

• Regularization using ‖ · ‖1 (for sparsity) or ‖ · ‖22
• Tikhonov regularization with ‖ · ‖22 especially important for SVM

• Regularize only linear terms w, not bias b

• Training problem with Tikhonov regularization of w

minimize
θ

N∑
i=1

max(0, 1− yi(wTφ(xi) + b)) + λ
2 ‖w‖

2
2

(note that features are used φ(xi))
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00001
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00006
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.00036
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.0021
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.013
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.077
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 0.46
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 2.78
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Nonlinear example

Regularized SVM and polynomial features of degree 6

Regularization parameter: λ = 16.7
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Dual problem

• Consider Tikhonov regularized SVM:

minimize
θ

N∑
i=1

max(0, 1− yi(wTφ(xi) + b)) + λ
2 ‖w‖

2
2

• Derive dual from reformulation of SVM:

minimize
θ

1T max(0, 1− (Xφ,Y w + Y b)) + λ
2 ‖w‖

2
2

where max is vector valued and

Xφ,Y =

 y1φ(x1)T

...
yNφ(xN )T

 , Y =

 y1

...
yN


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Dual problem

• Let L = [Xφ,Y , Y ] and write problem as

minimize
θ

1T max(0, 1− (Xφ,Y w + Y b))︸ ︷︷ ︸
f(L(w,b))

+ λ
2 ‖w‖

2
2︸ ︷︷ ︸

g(w,b)

where
• f(ψ) =

∑N
i=1 fi(ψi) and fi(ψi) = max(0, 1− ψi) (hinge loss)

• g(w, b) = λ
2
‖w‖22, i.e., does not depend on b

• Dual problem

minimize
ν

f∗(ν) + g∗(−LT ν)
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Conjugate of g

• Conjugate of g(w, b) = λ
2 ‖w‖

2
2 =: g1(w) + g2(b) is

g∗(µw, µb) = g∗1(µw) + g∗2(µb) = 1
2λ‖µw‖

2
2 + ι{0}(µb)

• Evaluated at −LT ν = −[Xφ,Y , Y ]T ν:

g∗(−LT ν) = g∗
(
−
[
XT
φ,Y

Y T

]
ν

)
= 1

2λ‖ −X
T
φ,Y ν‖22 + ι{0}(−Y T ν)

= 1
2λν

TXφ,YX
T
φ,Y ν + ι{0}(Y

T ν)
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Conjugate of f

• Conjugate of fi(ψi) = max(0, 1− ψi) (hinge-loss):

f∗i (νi) =

{
νi if −1 ≤ νi ≤ 0

∞ else

• Conjugate of f(ψ) =
∑N
i=1 fi(ψ) is sum of individual conjugates:

f∗(ν) =

N∑
i=1

f∗i (νi) = 1T ν + ι[−1,0](ν)
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SVM dual

• The SVM dual is

minimize
ν

f∗(ν) + g∗(−LT ν)

• Inserting the above computed conjugates gives dual problem

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ νi ≤ 0
Y T ν = 0

• Since Y ∈ RN , Y T ν = 0 is a hyperplane constraint

• If no bias term b; dual same but without hyperplane constraint
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Primal solution recovery

• Meaningless to solve dual if we cannot recover primal

• Necessary and sufficient primal-dual optimality conditions

0 ∈

{
∂f∗(ν)− L(w, b)

∂g∗(−LT ν)− (w, b)

• From dual solution ν, find (w, b) that satisfies both of the above

• For SVM, second condition is

∂g∗(−LT ν) =

[
1
λ (−XT

φ,Y ν)

∂ι{0}(−Y T ν)

]
3
[
w
b

]
which gives optimal w = − 1

λX
T
Φ,Y ν (since unique)

• Cannot recover b from this condition
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Primal solution recovery – Bias term

• Necessary and sufficient primal-dual optimality conditions

0 ∈

{
∂f∗(ν)− L(w, b)

∂g∗(−LT ν)− (w, b)

• For SVM, row i of first condition is 0 ∈ ∂f∗(νi)− Li(w, b) where

∂f∗i (νi) =


[−∞, 1] if νi ≤ −1

1 if −1 < νi < 0

[1,∞] if νi ≥ 0

, Li = yi[φ(xi)
T 1]

• Pick i such that νi ∈ (−1, 0), then ∂fi(νi) = 1 is unique and

0 = ∂f∗i (νi)− Li(w, b) = 1− yi(wTφ(xi) + b)

and the optimal b must satisfy b = yi − wTφ(xi) for such i
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SVM dual – A reformulation

• Dual problem

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ νi ≤ 0
Y T ν = 0

• Let κij := φ(xi)
Tφ(xj) and rewrite quadratic term:

νTXφ,YX
T
φ,Y ν = ν diag(Y )

φ(x1)T

...
φ(xN )T

 [φ(x1) · · · φ(xN )
]
diag(Y )ν

= ν diag(Y )

κ11 · · · κ1N

...
. . .

...
κN1 · · · κNN


︸ ︷︷ ︸

K

diag(Y )ν

where K is called Kernel matrix
20



SVM dual – Kernel formulation

• Dual problem with Kernel matrix

minimize
ν

∑N
i=1 νi + 1

2λν
T diag(Y )K diag(Y )ν

subject to −1 ≤ νi ≤ 0
Y T ν = 0

• Solved without evaluating features, only scalar products:

κij := φ(xi)
Tφ(xj)
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Kernel methods

• We explicitly defined features and created Kernel matrix

• We can instead create Kernel that implicitly defines features
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Kernel operators

• Define:
• Kernel operator κ(x, y) : Rn × Rn → R
• Kernel shortcut κij = κ(xi, xj)
• A Kernel matrix

K =

κ11 · · · κ1N

...
. . .

...
κN1 · · · κNN


• A Kernel operator κ : Rn × Rn → R is:

• symmetric if κ(x, y) = κ(y, x)
• positive semidefinite (PSD) if symmetric and

m∑
i,j

aiajκ(xi, xj) ≥ 0

for all m ∈ N, αi, αj ∈ R, and xi, xj ∈ Rn

• All Kernel matrices PSD if Kernel operator PSD
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Mercer’s theorem

• Assume κ is a positive semidefinite Kernel operator

• Mercer’s theorem:

There exists continuous functions {ej}∞j=1 and nonnegative
{λj}∞j=1 such that

κ(x, y) =

∞∑
j=1

λjej(x)ej(y)

• Let φ(x) = (
√
λ1e1(x),

√
λ2e2(x), ...) be a feature map, then

κ(x, y) = 〈φ(x), φ(y)〉

where scalar product in `2 (space of square summable sequences)

24



Kernel dual and corresponding primal

• SVM dual from Kernel κ with Kernel matrix [K]ij = κ(xi, xj)

minimize
ν

∑N
i=1 νi + 1

2λν diag(Y )K diag(Y )ν

subject to −1 ≤ νi ≤ 0
Y T ν = 0

• Due to Mercer’s theorem, this is dual to primal problem

minimize
θ

N∑
i=1

max(0, 1− yi(〈w, φ(xi)〉+ b)) + λ
2 ‖w‖

2

with potentially an infinite number of variables w
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Primal recovery and class prediction

• Assume we know Kernel operator, dual solution, but not features
• Can recover: Label prediction and primal solution b
• Cannot recover: Primal solution w (might be infinite sequence)

• Primal solution b = yi − wTφ(xi):

wTφ(xi) = − 1
λ
νTXφ,Y φ(xi) = − 1

λ
νT

 y1φ(x1)T

...
yNφ(xN )T

φ(xi) = − 1
λ
νT

 y1κ1i

...
yNκNi


• Label prediction for new data x (sign of wTφ(x) + b):

wTφ(x) + b = − 1
λν

T

 y1φ(x1)Tφ(x)
...

yNφ(xN )Tφ(x)

+ b = − 1
λν

T

 y1κ(x1, x)
...

yNκ(xN , x)

+ b

• We are really interested in label prediction, not primal solution
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Valid Kernels

• Polynomial kernel of degree d: κ(x, y) = (1 + xT y)d

• Radial basis function kernels:

• Gaussian kernel: κ(x, y) = e−
‖x−y‖22

2σ2

• Laplacian kernel: κ(x, y) = e−
‖x−y‖2

σ

• Bias term b often not needed with Kernel methods
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.01
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.035938
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.12915
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 0.46416
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 1.6681
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 5.9948
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Example – Laplacian Kernel

Regularized SVM with Laplacian Kernel with σ = 1

Regularization parameter: λ = 21.5443
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Example – Laplacian Kernel

What happens when there is no apparent structure in data?
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Example – Laplacian Kernel

What happens when there is no apparent structure in data?

Regularized SVM Laplacian Kernel, regularization parameter: λ = 0.01
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Composite optimization

Dual SVM problems

minimize
ν

∑N
i=1 νi + 1

2λν
TXφ,YX

T
φ,Y ν

subject to −1 ≤ νi ≤ 0
Y T ν = 0

can be written on the form

minimize
ν

h1(ν) + h2(−XT
φ,Y ν),

where

• h1(ν) = 1T ν + ι[−1,0](ν) + ι{0}(Y
T ν)

• First part 1T ν + ι[−1,0](ν) is conjugate of sum of hinge losses
• Second part ι{0}(Y

T ν) comes from that bias b not regularized

• h2(µ) = 1
2λ‖µ‖

2
2 is conjugate to Tikhonov regularization λ

2 ‖w‖
2
2
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Function properties

• Gradient of (h2 ◦ −XT
φ,Y ) satisfies:

∇(h2 ◦ −XT
φ,Y )(ν) = 1

2λν
TXφ,YX

T
φ,Y ν = 1

λXφ,YX
T
φ,Y ν

= 1
λ diag(Y )K diag(Y )ν

where K is Kernel matrix

• Function properties

• h2 is convex and λ−1-smooth, h2 ◦ −XT
φ,Y is

‖Xφ,Y ‖2

λ
-smooth

• h1 is convex and nondifferentiable, use prox of this in algorithms
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