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Learning goals

Understand the support vector machine classifier and its purpose
Understand generalization and overfitting to training data
Understand and be able to derive the dual SVM formulation

Be able to predict class beloning from dual solution

Familiar with the Kernels and how they relate to feature maps

Know how SVM kernel methods rely on dual SVM formulation



Binary classification

Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
Training problem

N
mmlemlzeziT (m(z4;0),y:)

Design loss L to train model parameters 6 such that:
® m(x;;60) < 0 for pairs (z;,y:) where y; =0
® m(xz;;60) > 0 for pairs (x;,y;) where y; =1
Predict class belonging for new data points  with trained 6:
. m(x;@ < 0 predict class y = 0
® m(xz;0) > 0 predict class y = 1



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(z;0)

L(u,y) = log(1 + e*) — yu (logistic loss)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(x;0) m(z;0)

nonconvex (Neyman Pearson loss)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = 0: Small cost for m(xz;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),0) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,u) — yu

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu) (hinge loss used in SVM)

m(z;0)



Binary classification — Cost functions

® Different cost functions L can be used:

® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(x;8) > 0 large for m(z;6) < 0

L(m(z;6),-1) L(m(z;6),1)

m(z;0)

L(u,y) = max(0,1 — yu)? (squared hinge loss)

m(z;0)



SVM - Training problem

® SVM uses hinge loss and affine model m(xz;0) = wlz +b
® Training problem:
N N
inimi L . N — 1 — s (wF s
mlnlemlzeiz:; (m(x4;0),y;) ; max(0, yi(w” x; + b))

Convex: L convex in first argument and model affine
There is 0 cost for sample ¢ if:
® label y; = —1 and model output u; = m(z;;6) < —1
® label y; = 1 and model output u; = m(z;;6) > 1

L(u,—1) L(u,1)

u u

® “Searches for correct labeling with margin”



Margin classification and support vectors

® Support vector machine classifiers for separable data
® (lasses separated with margin, o marks support vectors
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SVM - Prediction

® Assume we have trained model m(z;6) and want to predict label
® Predict for new data point z:

® label y; = —1if us = m(zi;0) =w z; +b <0

® label y; =1 if u; = m(z;;0) = wla; +b>0

® cjther label if u; = m(x;;6) = wlz, +b=0

® Therefore, the hyperplane (decision boundary)
H:={z:wlz+b=0}

separates class predictions



Nonlinear example

® Can classify nonlinearly separable data using lifting
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Adding features

Create feature map ¢ : R™ — RP of training data
Data points x; € R™ replaced by featured data points ¢(z;) € R?

Example: Polynomial feature map with n = 2 and degree d = 3

2 2 2
o(x) = (71,72, 73, 1129, 73, 23, 2320, 123, 3)

n+d) _ (n+d)!

Number of features p +1 = ("}¢) = =55 grows fast!

SVM training problem

N
minimize ;:1 max (0, yi(w” () + b))

still convex since features fixed



Nonlinear example

e SVM and polynomial features of degree 2

* %
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Nonlinear example

e SVM and polynomial features of degree 3
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Nonlinear example

e SVM and polynomial features of degree 4
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Nonlinear example

e SVM and polynomial features of degree 5
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Nonlinear example

e SVM and polynomial features of degree 6
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Nonlinear example

e SVM and polynomial features of degree 7
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Nonlinear example

e SVM and polynomial features of degree 8
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Nonlinear example

e SVM and polynomial features of degree 9
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Nonlinear example

e SVM and polynomial features of degree 10
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Overfitting and regularization

Also SVM s prone to overfitting if model too expressive
Regularization using || - ||1 (for sparsity) or || - [|3
Tikhonov regularization with || - |3 especially important for SVM

Regularize only linear terms w, not bias b

Training problem with Tikhonov regularization of w
N
miniemize ZmaX(O, 1—y;(w"¢(z;) + b)) + 3|w|3
i=1

(note that features are used ¢(z;))
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Nonlinear example

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00001
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Nonlinear example

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00006
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Nonlinear example

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.00036
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Nonlinear example

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.0021
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Nonlinear example

e Regularized SVM and polynomial features of degree 6

e Regularization parameter: A = 0.013
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Nonlinear example

e Regularized SVM and polynomial features of degree 6
e Regularization parameter: A\ = 0.077
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Nonlinear example

e Regularized SVM and polynomial features of degree 6

e Regularization parameter: A = 0.46

12



Nonlinear example

e Regularized SVM and polynomial features of degree 6

e Regularization parameter: A = 2.78
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Nonlinear example

e Regularized SVM and polynomial features of degree 6

e Regularization parameter: A = 16.7
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Dual problem

® Consider Tikhonov regularized SVM:

N
miniemizezmax(o, 1—y;(wé(z;) + b)) + 3|jw|)3

® Derive dual from reformulation of SVM:

miniomize 1" max(0,1 — (Xgyw + Yb)) + 3|w|3

where max is vector valued and

y1g(z1)T Y1
YN
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Dual problem

® Let L =[X4y,Y] and write problem as

minimize 17 max(0,1 — (Xyyw + Yb)) + 5 ||wl|3
0 S
F(L(w,b)) g(w,b)

where

* f() =N, filwi) and fi(1h;) = max(0,1 — ;) (hinge loss)

® g(w,b) = 5||wl3, i.e., does not depend on b

® Dual problem

minimize f*(v) + g*(—L"v)
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Conjugate of ¢

* Conjugate of g(w,b) = 3 |w[|3 =: g1(w) + g2(b) is

9 (s 1) = 95 () + 95 (1) = 55 110 ||3 + 1403 (126)

® Evaluated at —LTv = —[X, v, Y]Tv:

5 I =g (= | v) = &l - XEyviB + oy -¥ T

= il/TX@Y}(;jyl/ + t{0 (YTV)
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Conjugate of f

¢ Conjugate of f;(v;) = max(0,1 — v;) (hinge-loss):

% v; |f—1§1/1§0
fi (i) :{

oo else

¢ Conjugate of f(¢) = Zivzl fi(¥) is sum of individual conjugates:

N
)= i) =1"v 1)

=1
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SVM dual

The SVM dual is
minimize f*(v) + g* (- LTv)
v
Inserting the above computed conjugates gives dual problem
miniymize vazl v + ﬁVTXquXg,YV
subjectto —-1<1;<0
YTy =0

Since Y € RV, Y7v = 0 is a hyperplane constraint

If no bias term b; dual same but without hyperplane constraint

17



Primal solution recovery

Meaningless to solve dual if we cannot recover primal
Necessary and sufficient primal-dual optimality conditions

af*(v) — L(w,b)
0e {Bg*(—LTV) ~ (w,b)

From dual solution v, find (w,b) that satisfies both of the above

For SVM, second condition is

o ({50

which gives optimal w = —+ X{ v (since unique)

Cannot recover b from this condition

18



Primal solution recovery — Bias term

® Necessary and sufficient primal-dual optimality conditions

® For SVM, row i of first condition is 0 € 0f*(v;) — L;(w, b) where

[~o0,1] ify; < -1
afi(v) =41 if —1<wv; <0, L;j=uyié(z)T 1]
[,00] ifi>0

® Pick ¢ such that v; € (—1,0), then 9f;(v;) = 1 is unique and
0=0f; (i) — Li(w,b) = 1 — y;(w" ¢(x;) + b)

and the optimal b must satisfy b = y; — w? ¢(z;) for such i
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SVM dual — A reformulation

® Dual problem

o N
minimize Sivit s T Xy XD v
subjectto —1<1; <0

YTv =0

® Let k;j == ¢(x;)T¢(x;) and rewrite quadratic term:

[¢(x1)"
yTXd,)ng)YV = vdiag(Y) : [gb(:z:l) cee gb(xN)} diag(Y)v
Lo(zn)T
(k11 -+ KN
=vdiag(Y) | * .. o | diag(Y)v
|[AN1 -+ KNN
K

where K is called Kernel matrix
20



SVM dual — Kernel formulation

® Dual problem with Kernel matrix

minimize YN v + 5 vT diag(Y)K diag(Y)v
subjectto —1<1; <0
YTy =0

® Solved without evaluating features, only scalar products:

Rij = ¢(I1)T¢(Ij)

21



Kernel methods

® We explicitly defined features and created Kernel matrix

® We can instead create Kernel that implicitly defines features
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Kernel operators

® Define:

® Kernel operator k(z,y) : R* x R" - R
® Kernel shortcut k;; = K(zi, ;)
® A Kernel matrix

K11 R1IN

RN1 RNN

o A Kernel operator £ : R” x R" — R is:
® symmetric if k(z,y) = k(y, )
® positive semidefinite (PSD) if symmetric and

m
E aiajk(zi, z;) >0
2%}

forallm e N, a;,a; € R, and z;,2; € R"
o All Kernel matrices PSD if Kernel operator PSD
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Mercer’s theorem

® Assume k is a positive semidefinite Kernel operator

® Mercer's theorem:

There exists continuous functions {e;}2%; and nonnegative
{152, such that

K(z,y) =Y Ajej(x)e;(y)
j=1

o Let ¢(z) = (vVAie1(w), vV Azea(x),...) be a feature map, then

K(w,y) = (d(x), d(y))

where scalar product in {5 (space of square summable sequences)
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Kernel dual and corresponding primal

® SVM dual from Kernel x with Kernel matrix [K;; = k(z;, z;)

minimize Zfil Vi + 55 v diag(Y) K diag(Y)v

subjectto —1<1; <0
YTy =0

® Due to Mercer's theorem, this is dual to primal problem

N
L Al 12
minimize E_l max(0,1 — y;((w, ¢(z4)) + b)) + 5 [|w]|

with potentially an infinite number of variables w
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Primal recovery and class prediction

Assume we know Kernel operator, dual solution, but not features

® Can recover: Label prediction and primal solution b
® Cannot recover: Primal solution w (might be infinite sequence)

Primal solution b = y; — w’ ¢(x;):
y1(a1)” Yi1k1i
w' (@) = 3" KXoy d(z:) = —5v7 : dla) =—3v' |
yno(an)” YNKNi
Label prediction for new data z (sign of w” ¢(x) + b):
y1(x1)" p(x) yik(z1, )
w¢(z) +b=—1v" 5 +b=—1" 5 +b
yn(zn) " é(z) ynk(zN, )

We are really interested in label prediction, not primal solution
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Valid Kernels

® Polynomial kernel of degree d: x(z,y) = (1 4+ 27y)?
® Radial basis function kernels:

llz—yli3
® Gaussian kernel: k(z,y) =e 202

lz—yll2
® Laplacian kernel: k(z,y) =e~ o

® Bias term b often not needed with Kernel methods

27



Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A = 0.01
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A = 0.035938
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A\ = 0.12915
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A\ = 0.46416
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A = 1.6681
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A = 5.9948
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Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: \ = 21.5443
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Example — Laplacian Kernel

e What happens when there is no apparent structure in data?
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Example — Laplacian Kernel

e What happens when there is no apparent structure in data?

e Regularized SVM Laplacian Kernel, regularization parameter: A = 0.01
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Composite optimization

Dual SVM problems

o N
minimize Y1 v + x0T Xg vy X v
» :

subjectto —-1<v; <0
YTy =0

can be written on the form
minimize hq (v) + hz(—ngl/)7
" ;

where

° hl(V) =17y + L[—1,0] (V) + L{O}(YTV)
® First part 170 + t[-1,0)(v) is conjugate of sum of hinge losses
® Second part L{o}(YTZ/) comes from that bias b not regularized

® ha(p) = 55||ul3 is conjugate to Tikhonov regularization 4 |wl|3
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Function properties

® Gradient of (hg o —ng) satisfies:

V(hg o —quy)(lj) = iVTX@ng’YI/ = %X@ngyl/
= 1 diag(Y)K diag(Y)v

where K is Kernel matrix

® Function properties

. _ .Ix 2
® h, is convex and A\~ l-smooth, hs o —Xiy is w-smooth

® h; is convex and nondifferentiable, use prox of this in algorithms
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