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1 Introduction

We consider the problem of solving

minimize
x

f(x) + g(x) (1)

where f : Rn → R is convex and continuously differentiable and g : Rn → R ∪ {∞} is
proper closed and convex. We also assume that a solution exists. A necessary and sufficient
condition for x̄ to be a solution is that

0 ∈ ∂(g + f)(x) = ∂g(x) +∇f(x).

This follows from Fermat’s rule, the subdifferential sum rule (f has full domain) and that
∂f(x) = {∇f(x)}. Let us introduce the proximal gradient mapping

proxγg(I − γ∇f)

with γ > 0 and its fixed-point set F , defined as

F := {x : x = proxγ(x− γ∇f(x))}.

The fixed-point set F is exactly the solution set to (1).

Proposition 1. The set F satisfies

F = {x : 0 ∈ ∂g(x) +∇f(x)}.

Proof. We have by Fermat’s rule on the prox-grad step:

x̄ ∈ F ⇔ x̄ = proxγg(x̄− γ∇f(x̄))

⇔ 0 ∈ ∂g(x̄) + γ(x̄− (x̄− γ∇f(x̄)))

⇔ 0 ∈ ∂g(x̄) +∇f(x̄)

�

This implies that F is the same for all γ > 0. It also implies that solving (1) is equivalent
to finding a fixed-point to the proximal gradient method. (This holds in the convex setting,
in the nonconvex setting with nonconvex f , proximal gradient fixed-points are instead critical
points.)

A fixed-point to the proximal gradient mapping can be found in many different ways.
One option is to iterate the proximal gradient map gives, which gives the proximal gradient
method. However, many other methods also exist.

We will base the sequence convergence results in this note on the following theorem.

Theorem 1. Assume that f : Rn → R is convex and continuously differentiable and that
g : Rn → R∪{∞} is proper closed convex. A sequence (xk)k∈N (not necessarily coming from
the proximal gradient method) converges to a point in F (i.e., to a solution to (1)) if (and
only if):

(i) ‖proxγg(xk − γ∇f(xk))− xk‖ → 0 as k →∞

(ii) (‖xk − z‖)k∈N converges for all z ∈ F

We defer the proof of this result to Section 3. In the next section, we will show that
the proximal gradient method satisfies these conditions in the convex setting under some
step-size restrictions. Hence it generates a sequence that converges to a solution.
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2 Convergence of proximal gradient method

We will provide two different results that hold in different settings. One is based on the
descent lemma, and the other is based on operator theoretic arguments. The descent
lemma approach is more general as it can be used to show convergence under more general
assumptions (it can even tell us something in the nonconvex case), while the operator
theoretic approach allows for larger step-size parameters. We provide two alternative proofs
in the operator theoretic approach. Both results are based on Theorem 1.

The algorithm under consideration is the proximal gradient method

xk+1 = proxγkg(xk − γk∇f(xk))

where γk > 0 is a sequence of nonnegative scalar step-length variables. We assume that the
following assumptions hold on the problem and algorithm parameters.

Assumption 1. It holds that:

(i) f : Rn → R is convex and continuously differentiable

(ii) For every xk and xk+1 there exists βk ∈ [η, η−1] with η ∈ (0, 1):

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk − xk+1‖22
where βk is a sort of local Lipschitz constant

(iii) g : Rn → R ∪ {∞} is proper closed convex

(iv) A minimizer exists (and p? = minx(f(x) + g(x)) is optimal value)

(v) Algorithm parameters γk ∈ [ε, 2
βk
− ε], where ε > 0

We will show convergence of the proximal gradient method by proving that the generated
sequence satisfies both conditions in Theorem 1 in the convex setting. The first condition
holds even in the nonconvex setting. This stated below, and the proof does not rely on
convexity of f .

Proposition 2. Suppose that Assumption 1 holds. Then

‖proxγkg(xk − γk∇f(xk))− xk‖ → 0

as k →∞.

Proof. The proof uses:

(i) Assumption 1(iii)

(ii) Prox optimality condition: There exists sk+1 ∈ ∂g(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))

(iii) Subgradient definition: g(xk) ≥ g(xk+1) + sTk+1(xk − xk+1)

The key inequality is

f(xk+1) + g(xk+1)
(i)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk+1)

(iii)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk)

− sTk+1(xk − xk+1)

(ii)
= f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk)

+ γ−1k (xk+1 − (xk − γk∇f(xk)))T (xk − xk+1)

= f(xk) + g(xk)− (γ−1k −
βk

2 )‖xk+1 − xk‖22
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Since γk ∈ [ε, 2
βk
− ε] (where ε > 0 can be chosen such that the set is nonempty since

βk ∈ [η, η−1]), there exists δ > 0 such that

γ−1k ∈ [βk

2 + δ, δ−1] ⇒ γ−1k −
βk

2 > δ > 0

Rearranging the inequality and using this gives

δ‖xk+1 − xk‖22 ≤ f(xk) + g(xk)− (f(xk+1) + g(xk+1))

Telescope summation gives for all n ∈ N:

δ

n∑
k=1

‖xk+1 − xk‖22 ≤
n∑
k=1

(f(xk) + g(xk)− (f(xk+1) + g(xk+1)))

= f(x1) + g(x1)− (f(xn+1) + g(xn+1))

≤ f(x1) + g(x1)− p? <∞

where p? = minx(f(x) + g(x)) and <∞ since x1 ∈ domg. Since δ > 0, this implies:

‖proxγg(xk − γ∇f(xk))− xk‖ = ‖xk+1 − xk‖ → 0.

�

2.1 Convergence proof based on descent lemma

To show that the second condition in Theorem 1 holds based on the descent lemma, we need
to half the allowed step-length range. The following result shows convergence. The proof is
similar to the proof of Proposition 2 but uses in addition convexity of f .

Theorem 2. Suppose that Assumption 1 holds and that in addition γk ∈ [ε, 1
βk

]. Then

(‖xk − z‖)k∈N converges for all z in the fixed-point set F .

Proof. The proof uses:

(i) Assumption 1(iii)

(ii) Prox optimality condition: There exists sk+1 ∈ ∂g(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))

(iii) Subgradient definition: g(z) ≥ g(xk+1) + sTk+1(z − xk+1) for all z ∈ F

(iv) Convexity of differentiable f : f(z) ≥ f(xk) +∇f(xk)T (z − xk) for all z ∈ F

(v) That: (xk+1 − xk)T (z − xk+1) = 1
2 (‖xk − z‖22 − ‖xk+1 − z‖22 − ‖xk − xk+1‖22)

The key inequality is

f(xk+1) + g(xk+1)
(i)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk+1)

(iii)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(z)

− sTk+1(z − xk+1)

(ii)
= f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(z)

+ γ−1k (xk+1 − (xk − γk∇f(xk)))T (z − xk+1)

(iv)

≤ f(z)−∇f(xk)T (z − xk) +∇f(xk)T (xk+1 − xk)

+ βk

2 ‖xk+1 − xk‖22 + g(z) + γ−1k (xk+1 − (xk − γk∇f(xk)))T (z − xk+1)

= f(z) + g(z) + βk

2 ‖xk+1 − xk‖22 + γ−1k (xk+1 − xk)T (z − xk+1)

(v)
= f(z) + g(z) +

γ−1
k

2 ‖xk − z‖
2
2 − 1

2 (γ−1k − βk)‖xk+1 − xk‖22

− γ−1
k

2 ‖xk+1 − z‖22
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Rearranging the inequality and multiplying by 2γk > 0 gives

‖xk+1 − z‖22 ≤ ‖xk − z‖22 − (1− βkγk)‖xk+1 − xk‖22
+ 2γk((f(z) + g(z))− (f(xk+1) + g(xk+1)))

≤ ‖xk − z‖22 − (1− βkγk)‖xk+1 − xk‖22

since γk ∈ [ε, 1
βk

] (where ε > 0 can be chosen such that the set is nonempty since βk ∈
[η, η−1]). This concludes the proof. �

Proposition 2 and Theorem 2 together guarantee that the conditions of Theorem 1 are
satisfied for sequences generated by the proximal gradient method under the assumption
stated in Theorem 2.

2.2 Convergence proof based on operator properties

In this section, we keep the step-length requirement from Assumption 1 but instead restrict
the assumption on f . We will assume that f is β-smooth, which is stronger than Assumption 1(iii).
For β-smooth f , the gradient is β−1-cocoercive (see below). First we provide a characterization
of cocoercive operators.

Proposition 3. Let C : Rn → Rn be β-cocoercive, i.e.,

(Cx− Cy)T (x− y) ≥ β‖Cx− Cy‖22

holds for all x, y ∈ Rn. Then C = 1
2β (I +N) for some nonexpansive (1-Lipschitz) operator

N : Rn → Rn, i.e., an N that satisfies

‖Nx−Ny‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn.

Proof. That N = 2βC− I is equivalent to that C = 1
2β (I +N). We therefore need to show

that 2βC − I is nonexpansive. The definition

0 ≥ β‖Cx− Cy‖22 − (Cx− Cy)T (x− y)

= β‖Cx− Cy‖22 + 1
2 (−‖

√
2β(Cx− Cy)‖22 − ‖

√
1
2β (x− y)‖22 + ‖

√
2β(Cx− Cy)−

√
1
2β (x− y)‖22)

= β‖Cx− Cy‖22 + 1
2 (−2β‖(Cx− Cy)‖22 − 1

2β ‖(x− y)‖22 + 1
2β ‖2β(Cx− Cy)− (x− y)‖22)

= − 1
4β ‖(x− y)‖22 + 1

4β ‖(2βC − I)x− (2βC − Iy)‖22,

which is equivalent to that

‖(x− y)‖2 ≤ ‖(2βC − I)x− (2βC − Iy)‖2,

i.e. 2βC − I is nonexpansive. �

The result relies on the following properties of gradients of smooth convex functions and
of proximal operators.

Proposition 4. The gradient ∇f of a β-smooth and convex function f : Rn → R is β−1-
cocoercive, i.e., it satisfies

(∇f(x)−∇f(y))T (x− y) ≥ β−1‖∇f(x)−∇f(y)‖22

for all x, y ∈ Rn. Further (I − γ∇f) is nonexpansive (1-Lipschitz) if γ ∈ (0, 2
β ).
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Proof. The first result on cocoercivity can be found in the note on duality correspondence.
Next, we prove the Lipschitz constant of (I−γ∇f). We invoke Proposition 3 and let N be the
nonexpansive such that ∇f = β

2 (I+N). Then I−γ∇f = I− γβ
2 (I+N) = (1− γβ

2 )I− γβ
2 N .

Now, let γ ∈ (0, 2
β ), then

‖(I − γ∇f)(x)− (I − γ∇f)(y)‖2 = ‖(1− γβ
2 )x− γβ

2 Ny − (1− γβ
2 )y − γβ

2 Ny‖2
≤ ‖(1− γβ

2 )(x− y)‖2 + ‖γβ2 (Nx−Ny)‖2
≤ (1− γβ

2 )‖(x− y)‖2 + γβ
2 ‖(Nx−Ny)‖2

≤ ‖x− y‖2,

where nonexpansiveness of N has been used in the last inequality. �

Cocercivity of ∇f does not hold if f is nonconvex. We will provide two proofs of the
sequence convergences result in this section. The first uses the inequality that defines the
cocoercive operator ∇f . The second uses that the gradient mapping is nonexpansive. This
second proof becomes simpler. Both proofs also use the following result.

Proposition 5. The proximal operator of a closed convex functions g : Rn → R ∪ {∞} is
1-cocoercive, i.e., it satisfies

(proxγg(x)− proxγg(y))T (x− y) ≥ ‖proxγg(x)− proxγg(y)‖22

for all x, y ∈ Rn. Consequently it is 1-Lipschitz continuous (nonexpansive), i.e.,

‖proxγg(x)− proxγg(y)‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn.

Proof. We claim that proxγg = ∇r∗, where r(x) = γg(x) + 1
2‖x‖

2
2. First, we note that r

is 1-strongly convex, hence r∗ is differentiable, ∇r∗ is 1-cocoercive, hence 1-Lipschitz. The
claim follows since:

proxγg(z) = argmin(g(x) + 1
2γ ‖x− z‖

2
2)

= argmax(−γg(x)− 1
2‖x− z‖

2
2)

= argmax(zTx− ( 1
2‖x‖

2
2 + γg(x)))

= argmax(zTx− r(x))

= ∇r∗(z)

where we have used the subgradient formula for r∗ and that ∂r∗(z) = {∇r∗(z)} due to
convexity of the conjugate. �

Theorem 3. Suppose that Assumption 1 holds and that in addition f is β-smooth, i.e.,
γk ∈ [ε, 2

β − ε]. Then (‖xk − z‖)k∈N converges for all z in the fixed-point set F .

Proof. For all z ∈ F , it holds that

‖xk+1 − z‖22 = ‖proxγkg(xk − γk∇f(xk))− proxγkg(z − γk∇f(z))‖22
≤ ‖(xk − γk∇f(xk))− (z − γk∇f(z))‖22
= ‖xk − z‖22 − 2γk(∇f(xk)−∇f(z))T (xk − z) + γ2k‖∇f(xk)−∇f(z))‖22
≤ ‖xk − z‖22 −

2γk
β ‖∇f(xk)−∇f(z))‖22 + γ2k‖∇f(xk)−∇f(z))‖22

≤ ‖xk − z‖22 − γk( 2
β − γk)‖∇f(xk)−∇f(z))‖22

where we have used Propositions 4 and 5 in the inequalities. This proves the claim. �

We also provide an alternative proof based on operator properties.
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Proof. Since proxγkg and (I−γk∇f) for γk ∈ [ε, 2
β−ε] are nonexpansive (Propositions 5 and 4),

it holds for all x, y ∈ Rn that

‖proxγkg(I − γk∇f)x− proxγkg(I − γk∇f)y‖2 ≤ ‖(I − γk∇f)x− (I − γk∇f)y‖2 ≤ ‖x− y‖2.

Let in particular x = xk (which implies xk+1 = proxγkg(I − γk∇f)x) and y = z to get the
result. �

This second proof show the stronger property that the proximal gradient operator is
nonexpansive.

Proposition 2 and Theorem 3 together guarantee that the conditions of Theorem 1 are
satisfied for sequences generated by the proximal gradient method under the assumption
stated in Theorem 3.

2.3 Strong convexity

In this section, we repeat the above results in the strongly convex setting. The computations
are very similar to in the convex case. There are two properties that make the analysis
simpler. The solution set to (1) is a singleton, i.e., the solution is unique. The method
sequence is a contraction towards the solution. This is also referred to as that the algorithm
converges linearly (or geometrically). In such cases, sequence convergence does not rely on
Theorem 1.

The two convergence results are respectively based on the descent lemma and an operator
theoretic approach. The operator theoretic approach shows linear convergence for a larger
set of algorithm parameters and it provides a better (smaller) linear convergence rate. Again,
we provide two different proofs in the operator theoretic approach.

2.3.1 Convergence proof based on descent lemma

We assume in addition to what is assumed in Theorem 2 that f is σ-strongly convex for
some σ > 0. The proof is very similar to the proof of Theorem 2 but uses strong convexity
of f .

Theorem 4. Suppose that Assumption 1 holds and that in addition γk ∈ [ε, 1
βk

] and that

f is σ-strongly convex with σ > 0. Then the sequence (xk)k∈N generated by the proximal
gradient method converges to the unique solution z ∈ F with linear rate as follows:

‖xk+1 − z‖22 ≤
1−γkσ
1+γkσ

‖xk − z‖22 =
(

1− 2γkσ
1+γkσ

)
‖xk − z‖22.

Proof. The proof uses:

(i) Assumption 1(iii)

(ii) Prox optimality condition: There exists sk+1 ∈ ∂g(xk+1)

0 = sk+1 + γ−1k (xk+1 − (xk − γk∇f(xk)))

(iii) Subgradient definition: g(z) ≥ g(xk+1) + sTk+1(z − xk+1) for all z ∈ F

(iv) Strong convexity of differentiable f : f(z) ≥ f(xk) +∇f(xk)T (z−xk) + σ
2 ‖xk− z‖

2
2 for

all z ∈ F

(v) That: (xk+1 − xk)T (z − xk+1) = 1
2 (‖xk − z‖22 − ‖xk+1 − z‖22 − ‖xk − xk+1‖22)

6



The key inequality is

f(xk+1) + g(xk+1)
(i)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(xk+1)

(iii)

≤ f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(z)

− sTk+1(z − xk+1)

(ii)
= f(xk) +∇f(xk)T (xk+1 − xk) + βk

2 ‖xk+1 − xk‖22 + g(z)

+ γ−1k (xk+1 − (xk − γk∇f(xk)))T (z − xk+1)

(iv)

≤ f(z)−∇f(xk)T (z − xk)− σ
2 ‖xk − z‖

2
2 +∇f(xk)T (xk+1 − xk)

+ βk

2 ‖xk+1 − xk‖22 + g(z) + γ−1k (xk+1 − (xk − γk∇f(xk)))T (z − xk+1)

= f(z) + g(z) + βk

2 ‖xk+1 − xk‖22 − σ
2 ‖xk − z‖

2
2 + γ−1k (xk+1 − xk)T (z − xk+1)

(v)
= f(z) + g(z) + 1

2 (γ−1k − σ)‖xk − z‖22 − 1
2 (γ−1k − βk)‖xk+1 − xk‖22

− γ−1
k

2 ‖xk+1 − z‖22

Rearranging the inequality and multiplying by 2γk > 0 gives

‖xk+1 − z‖22 ≤ (1− γkσ)‖xk − z‖22 − (1− βkγk)‖xk+1 − xk‖22
+ 2γk((f(z) + g(z))− (f(xk+1) + g(xk+1)))

≤ (1− γkσ)‖xk − z‖22 + 2γk((f(z) + g(z))− (f(xk+1) + g(xk+1))) (2)

where we have used γk ∈ [ε, 1
βk

] (where ε > 0 can be chosen such that the set is nonempty

since βk ∈ [η, η−1]). Next use that s ∈ ∂g(z) exists, i.e.,

g(xk+1) ≥ g(z) + sT (xk+1 − z)

and that f is σ-strongly convex

f(xk+1) ≥ f(z) +∇f(z)T (xk+1 − z) + σ
2 ‖z − xk+1‖22.

By subdifferential sum rule we have 0 ∈ ∂(f +g)(z) = ∂g(z)+∇f(z). Let s ∈ ∂g(z) be such
that 0 = s+∇f(z). Add the two previous inequalities to get

f(xk+1) + g(xk+1) ≥ f(z) + g(z) + (∇f(z) + s)T (xk+1 − z) + σ
2 ‖z − xk+1‖22

≥ f(z) + g(z) + σ
2 ‖z − xk+1‖22

Therefore, the inequality in (2) can be continued as

‖xk+1 − z‖22 ≤ (1− γkσ)‖xk − z‖22 + 2γk((f(z) + g(z))− (f(xk+1) + g(xk+1)))

≤ (1− γkσ)‖xk − z‖22 − γkσ‖xk+1 − z‖22.

Rearranging gives

‖xk+1 − z‖22 ≤
1−γkσ
1+γkσ

‖xk − z‖22 =
(

1− 2γkσ
1+γkσ

)
‖xk − z‖22

This concludes the proof. �

Theorem 4 directly guarantees that the sequence converges (linearly) to the unique fixed-
point. Therefore, we do not need to rely on Theorem 1 to show sequence convergence.
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2.3.2 Convergence proof based on operator properties

We assume in addition to what is assumed in Theorem 3 that f is σ-strongly convex for
some σ > 0. The proof is very similar to the proof of Theorem 3 but uses strong convexity
of f .

The result relies on the following properties of gradients of smooth strongly convex
functions.

Proposition 6. The gradient ∇f of a β-smooth and σ-strongly convex function f : Rn → R
with β ≥ σ > 0 satisfies

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ‖∇f(x)−∇f(y)‖22 + σβ

β+σ‖x− y‖
2
2

for all x, y ∈ Rn. Further (I − γ∇f) is max(1 − γσ, γβ − 1)-contractive (Lipschitz with
parameter less than 1) if γ ∈ (0, 2

β ).

Proof. Assume first that β > σ. We have f is β-smooth and σ-strongly convex if and only if
f− σ

2 ‖·‖
2
2 is convex and (β−σ)-smooth. This is equivalent to that ∇(f− σ

2 ‖·‖
2
2) = ∇f−σI

is 1
β−σ cocoercive (see note on duality correspondence), i.e.

(∇f(x)− σx− (∇f(y)− σy))T (x− y) ≥ 1
β−σ‖∇f(x)− σx− (∇f(y)− σy)‖22

= 1
β−σ

(
‖∇f(x)−∇f(y)‖22 + σ2‖x− y‖22 − 2σ(∇f(x)−∇f(y))T (x− y)

)
.

Rearrangement and using (1 + 2σ
β−σ ) = β+σ

β−σ gives

β+σ
β−σ (∇f(x)−∇f(y))T (x− y) ≥ 1

β−σ
(
‖∇f(x)−∇f(y)‖22 + σ2‖x− y‖22

)
+ σ‖x− y‖22

which is equivalent to

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ

(
‖∇f(x)−∇f(y)‖22 + σ2‖x− y‖22

)
+ σ β−σβ+σ ‖x− y‖

2
2

which is equivalent to

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ

(
‖∇f(x)−∇f(y)‖22 + βσ‖x− y‖22

)
.

To prove that I−γ∇f is contractive, we start again from that ∇f−σI is 1
β−σ -cocoercive.

We invoke Proposition 3 and let N be the nonexpansive such that ∇f − σI = β−σ
2 (I +N).

Then I − γ∇f = I − γ(β−σ)
2 (I +N)− σγI = (1− γ(β+σ)

2 )I − γ(β−σ)
2 N . Now, let γ ∈ (0, 2

β ),
then

‖(I − γ∇f)(x)− (I − γ∇f)(y)‖2 = ‖(1− γ(β+σ)
2 )x− γ(β−σ)

2 Nx− (1− γ(β+σ)
2 )y − γ(β−σ)

2 Ny‖2
≤ ‖(1− γ(β+σ)

2 )(x− y)‖2 + ‖γ(β−σ)2 (Nx−Ny)‖2
≤ |(1− γ(β+σ)

2 )|‖(x− y)‖2 + γ(β−σ)
2 ‖Nx−Ny‖2

≤ (|(1− γ(β+σ)
2 )|+ γ(β−σ)

2 )‖x− y‖2
≤ max(1− γσ, γβ − 1)‖x− y‖2.

To prove the case β = σ, some extra care is needed to avoid division by 0. �

Also here, we will provide two proofs of the linear convergence result. The first uses the
inequality describing ∇f , while the other uses that it is contractive. The second proof is
simpler, and the first proof also needs following result, which we state without a proof.

Proposition 7. The gradient ∇f of a differentiable and σ-strongly convex and β-smooth
function f : Rn → R with β > σ > 0 satisfies

σ‖x− y‖2 ≤ ‖∇f(x)−∇f(y)‖2 ≤ β‖x− y‖2

for all x, y ∈ Rn.
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Theorem 5. Suppose that Assumption 1 holds and that in addition f is β-smooth and σ-
strongly convex and that γk ∈ [ε, 2

β−ε]. Then the sequence (xk)k∈N generated by the proximal
gradient method converges to the unique solution z ∈ F with linear rate as follows:

‖xk+1 − z‖2 ≤ max(1− σγk, βγk − 1)‖xk − z‖2.

Proof. For all z ∈ F , it holds that

‖xk+1 − z‖22 = ‖proxγkg(xk − γk∇f(xk))− proxγkg(z − γk∇f(z))‖22
≤ ‖(xk − γk∇f(xk))− (z − γk∇f(z))‖22
= ‖xk − z‖22 − 2γk(∇f(xk)−∇f(z))T (xk − z) + γ2k‖∇f(xk)−∇f(z))‖22
≤ ‖xk − z‖22 −

2γk
β+σ (‖∇f(xk)−∇f(z)‖22 + σβ‖xk − z‖22) + γ2k‖∇f(xk)−∇f(z))‖22

≤ (1− 2γkσβ
β+σ )‖xk − z‖22 − γk( 2

β+σ − γk)‖∇f(xk)−∇f(z))‖22

where we have used Propositions 6 and 5 in the inequalities. Now, let us apply Proposition 7
to conclude that

−γk( 2
β+σ − γk)‖∇f(xk)−∇f(z)‖22 ≤ −γk( 2

β+σ − γk)‖xk − z‖22

{
σ2 if γk ∈ [ε, 2

β+σ ]

β2 if γk ∈ ( 2
β+σ ,

2
β − ε]

Therefore,

‖xk+1 − z‖22 ≤ ‖xk − z‖22


(

1− 2γkσβ
β+σ − γkσ

2( 2
β+σ − γk)

)
if γk ∈ [ε, 2

β+σ ](
1− 2γkσβ

β+σ − γkβ
2( 2
β+σ − γk)

)
if γk ∈ ( 2

β+σ ,
2
β − ε]

= ‖xk − z‖22


(

1− 2γkσ(β+σ)
β+σ + γ2kσ

2
)

if γk ∈ [ε, 2
β+σ ](

1− 2γkβ(β+σ)
β+σ + γ2kβ

2
)

if γk ∈ ( 2
β+σ ,

2
β − ε]

= ‖xk − z‖22

{(
1− 2γkσ + γ2kσ

2)
)

if γk ∈ [ε, 2
β+σ ](

1− 2γkβ + γ2kβ
2)
)

if γk ∈ ( 2
β+σ ,

2
β − ε]

= ‖xk − z‖22

{
(1− γkσ)

2
if γk ∈ [ε, 2

β+σ ]

(1− γkβ)
2

if γk ∈ ( 2
β+σ ,

2
β − ε]

Taking the square root we get

‖xk+1 − z‖2 ≤ max(1− σγk, βγk − 1)‖xk − z‖2.

This proves the claim. �

We also provide a very short proof using operator properties of proxγkg and I − γk∇f .

Proof. Since proxγkg is nonexpansive (Proposition 5) and (I − γk∇f) for γk ∈ [ε, 2
β − ε] is

max(1− γkσ, γkβ − 1)-Lipschitz (Proposition 6), it holds for all x, y ∈ Rn that

‖proxγkg(I − γk∇f)x− proxγkg(I − γk∇f)y‖2 ≤ ‖(I − γk∇f)x− (I − γk∇f)y‖2
≤ max(1− γkσ, γkβ − 1)‖x− y‖2.

Let in particular x = xk (which implies xk+1 = proxγkg(I − γk∇f)x) and y = z to get the
result. �

Theorem 5 directly guarantees that the sequence converges (linearly) to the unique fixed-
point. Therefore, we do not need to rely on Theorem 1 to show sequence convergence.
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3 Proof of Theorem 1

The proof of Theorem 1 relies on convergent subsequences. Let us first define a subsequence,
and state a well known result on when a sequence possesses a convergence subsequence.

Let (xk)k∈N be an infinite sequence. A subsequence takes an infinite subset of elements
in (xk), e.g., all odd elements or all even elements. We denote a subsequence to (xk) by
(xnk

)k∈N. A subsequence (xnk
)k∈N is convergent if it converges to some limit point, i.e,

xnk
→ x̄. The full sequence does not necessarily converge if its convergent subsequences

converge:

(xk)k∈N = (−1k)k∈N does not converge, while (x2k)k∈N = (1)k∈N does

The Bolzano-Weierstrass theorem implies the following. Assume that (xk)k∈N with xk ∈ Rn
is a bounded sequence. Then at least one convergent subsequence exists. We denote by B
the set of limit points of convergent subsequences to (xk)k∈N, i.e.,

x̂ ∈ B ⇔ there exists a subsequence (xnk
)k∈N with xnk

→ x̂

The Bolzano-Weierstrass theorem implies that B 6= ∅ if the sequence (xk)k∈N is bounded.
The roadmap to proving Theorem 1 is that we first note that a convergent subsequence

exits since the second condition implies that the sequence is bounded, i.e., B 6= ∅. The next
step is to show that any convergent (sub)sequence that satisfies the first condition in the
theorem has a limit point in the set F , i.e. B ⊆ F . The last part applies Browder’s Lemma.

Lemma 1. Assume that S is a nonempty set and that (xk)k∈N is a sequence such that
(‖xk − z‖)k∈N converges for all z ∈ S. Then

xk → x̄ ∈ S ⇔ B ⊆ S

After we have proven this lemma, it is enough to show that for any convergent subsequence,
its limit point is in F . We first prove Browder’s lemma.

Proof. A sequence converges if and only if it is bounded and B is a singleton. By assumption,
(xk)k∈N is bounded and B is nonempty. It is therefore enough to show that B cannot contain
two distinct points. Let x̄, ȳ ∈ B and assume they are different, i.e., x̄ 6= ȳ. Denote the
corresponding subsequences xlk → x̄ and xnk

→ ȳ. Since x̄ and ȳ belong to S, the sequences
(‖xk − x̄‖)k∈N and (‖xk − ȳ‖)k∈N converge. Now, since for all k ∈ N,

2xTk (x̄− ȳ) = ‖xk − ȳ‖22 − ‖xk − x̄‖22 + ‖x̄‖22 − ‖ȳ‖22,

the sequence (2xTk (x̄− ȳ))k∈N converges too. We let 2xTk (x̄− ȳ)→ θ. Taking the limit along
xlk and xnk

gives

0 = θ − θ = lim
k→∞

2xTlk(x̄− ȳ)− lim
k→∞

2xTnk
(x̄− ȳ) = x̄T (x̄− ȳ)− ȳT (x̄− ȳ) = ‖x̄− ȳ‖2.

Hence x̄ = ȳ and B is a singleton. This concludes the proof. �

We next finish the proof by showing that the limit points of all convergent subsequences
belong to F . To prove this, we need the following results.

Proposition 8. Suppose that S ⊂ Rn is a nonempty closed set and that (xk)k∈N is a
convergent sequence xk → x̄ and all xk ∈ S. Then x̄ ∈ S.

Proposition 9. The graph of the subdifferential ∂g of a closed convex function g, i.e., the
set

gph∂g = {(x, u) : u ∈ ∂g(x)},

is a closed set.
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We use these results to show that any convergent sequence in the graph of ∂g converges
to a point in the graph.

Corollary 1. Suppose that g is closed convex and that (xk, uk)k∈N converges (xkuk)→ (x̄, ū)
and that all (xk, uk) ∈ gph∂g. Then (x̄, ū) ∈ gph∂g, i.e., ū ∈ ∂g(x̄).

Proof. Apply Propositions 8 and 9. �

Let (xnk
)k∈N be any convergent (sub)sequence with limit point x̄ and define vnk

=
proxγnk

g(xnk
− γnk

∇f(xnk
)), which by assumption satisfies ‖vnk

− xnk
‖ → 0 as k → ∞.

The proximal gradient optimality condition is

∂g(vnk
) +∇f(xnk

) 3 γ−1k (xnk
− vnk

)

Let wnk
= γ−1k (xnk

− vnk
)−∇f(xnk

) and

wnk
∈ ∂g(vnk

) ⇔ (vnk
, wnk

) ∈ gph∂g.

Now, since ‖vnk
− xnk

‖ → 0 and xnk
→ x̄, we conclude

vnk
= vnk

− xnk
+ xnk

→ 0 + x̄ = x̄

wnk
= γ−1k (xnk

− vnk
)−∇f(xnk

)→ 0−∇f(x̄) = −∇f(x̄)

where the second conclusion follows from uniform upper and lower boundedness of γk and
continuity of ∇f . Therefore (vnk

, wnk
) ∈ gph∂g satisfies (vnk

, wnk
) → (x̄,−∇f(x̄). An

appeal to Corollary 1 implies that (x̄,−∇f(x̄)) ∈ gph∂g, or equivalently −∇f(x̄) ∈ ∂g(x̄)
which is equivalent to that x̄ ∈ F .

This concludes the proof.
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