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Introduction

The exercises are divided into problem areas that roughly match the lecture
schedule.

Exercises marked with (H) have hints available, listed in the end of each chapter.
Not as fundamental or more difficult exercises are marked with (?).
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Chapter 1

Convex Sets and Convex
Functions

Exercise 1.1
Given the following sets.

a. b.

c. d.

1. Which of the sets are convex. Motivate.

2. Mark all points the sets have supporting hyperplanes at.

3. Draw the convex hull of each set.

Exercise 1.2 (H)
Which of the following sets are convex. Prove or disprove. You can assume that
the data defining the sets generate nonempty sets.

1. S = {x ∈ Rn : Ax = b} with A ∈ Rm×n and b ∈ Rm

2. S = {x ∈ Rn : Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : x ≥ 0}

4. S = {x ∈ Rn : l ≤ x ≤ u}
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5. S = {x ∈ Rn : ‖x‖2 ≤ 1}

6. S = {x ∈ Rn : −‖x‖2 ≤ −1}

7. S = {x ∈ Rn : −‖x‖2 ≤ 1}

8. S = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

9. S = {X ∈ Rn×n : X positive semi-definite}

10. S = {x ∈ Rn : x = a}

11. S = {x ∈ Rn : x = a or x = b with a 6= b}

Exercise 1.3
Suppose that C1 and C2 are convex sets.

1. Is the set C = {x ∈ Rn : x ∈ C1 and x ∈ C2} the union or intersection of C1

and C2? Is it convex? Prove or provide counter example.

2. Is the set C = {x ∈ Rn : x ∈ C1 or x ∈ C2} the union or intersection of C1

and C2? Is it convex? Prove or provide counter example.

Exercise 1.4
Which of the following sets are affine?

1. V = {x ∈ Rn : x = a}

2. V = {x ∈ Rn : x = αa+ (1− α)b, a 6= b, α ∈ [0, 1]}

3. V = {x ∈ Rn : x = αa+ (1− α)b, a 6= b, α ∈ R}

Exercise 1.5
A set K is a cone if for all x ∈ K also αx ∈ K for all α ≥ 0. Which of the
following figures represent cones? Which of them are convex?

a. b.

c. d.
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Exercise 1.6
Which of the following sets are convex cones? Prove or disprove. You can
assume that the data defining the sets generate nonempty sets.

1. S = {x ∈ Rn : Ax = 0} with A ∈ Rm×n

2. S = {x ∈ Rn : Ax = b with b 6= 0} with A ∈ Rm×n and b ∈ Rm

3. S = {x ∈ Rn : Ax ≤ 0} with A ∈ Rm×n

4. S = {x ∈ Rn : Ax ≤ b with A 6= 0 and b 6= 0} with A ∈ Rm×n and b ∈ Rm

5. S = {x ∈ Rn : x ≥ 0}

6. S = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}

7. S = {X ∈ Rn×n : X positive semidefinite}

Exercise 1.7
Prove or disprove that the following functions f : Rn → R ∪ {∞} are convex.

1. Indicator function of convex set C:

f(x) = ιC(x) =

{
0 if x ∈ C

∞ else

2. f(x) = ‖x‖

3. f(x) = −‖x‖

4. f(x, y) = xy

5. f(x) = aTx+ b

6. f(x) = 1
2x

TQx with Q ∈ Rn×n positive semi-definite matrix

7. f(x) = distC(x) = infy∈C{‖x− y‖} where C is a convex set

Exercise 1.8
Show that the following functions f : Rn → R ∪ {∞} are convex. You may use
convexity preserving operations.

1. f(x) = ‖x‖p with p ≥ 1

2. f(x) = ‖Ax− b‖22 + ‖x‖1

3. f(x) = max(‖x‖, ‖x‖2, ‖x‖3)

4. f(x) =
∑

i(max(0, 1 + xi)) + ‖x‖22

5. f(x) = supy(x
T y − g(y)) (these will be called conjugate functions)
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Exercise 1.9 (H)
Let C = {x : g(x) ≤ 0}.

1. Suppose that g : Rn → R is a convex function for which x̄ ∈ Rn exists with
g(x̄) < 0. Show that C is a nonempty convex set.

2. Construct a nonconvex function g : R → R such that C is convex.

3. Construct a nonconvex function g : R → R such that C is nonconvex.

Exercise 1.10
Draw the epigraph of the following functions.

• f(x) = |x|

• f(x) = x2

• f(x) = |x|+ x2

• f(x) = max(|x|, x2)

• f(x) = min(|x|, x2)

Exercise 1.11 (H)
Assume that g1 : Rn → R ∪ {∞} and g2 : Rn → R ∪ {∞} are convex functions.
Prove the following explicitly, without resorting to convexity preserving
operations.

1. Show that g(x) = g1(x) + g2(x) is convex

2. Show that g(x) = max(g1(x), g2(x)) is convex

Exercise 1.12
Let f : Rn → R ∪ {∞} be convex, i.e., let f satisfy

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all θ = [0, 1] and let X be (effective) domain of f , i.e. X = domf = {x ∈ Rn :
f(x) < ∞}. Show that X is convex.

Exercise 1.13
Let f : Rn → R be an affine function defined by f(x) = aTx+ b. Show that epif
is a halfspace in Rn+1.

Exercise 1.14
Let L(u, y) be convex in u for every fixed y.
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1. Let m(x; θ) = θx, where x ∈ Rm is fixed and θ ∈ Rn×m. Is the function
L(m(x; θ), y) convex in θ for all fixed x and y? Prove or provide
counterexample.

2. Let θ = (θ1, θ2) ∈ Rn1×m1 × Rn2×m2 and m(x; θ) = θ2σ(θ1x), where
σ : Rn1 → Rm2 is differentiable and x ∈ Rm1 is fixed. Is L(m(x; θ), y)
convex in θ for all fixed x and y and differentiable σ? Prove or provide
counterexample.

Exercise 1.15
Strong convexity and smoothness.

1. Show that f(x)− σ
2 ‖x‖

2
2 is convex (i.e., f is σ-strongly convex) if and only if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− σ
2 θ(1− θ)‖x− y‖2

for θ ∈ [0, 1].

2. Show that β
2 ‖x‖

2
2 − f(x) is convex (i.e., f is β-smooth) if and only if

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)− β
2 θ(1− θ)‖x− y‖2

for θ ∈ [0, 1].

Exercise 1.16 (H)
Given some unknown function f where we know f(1) = 1, f(−1) = 0. For
x ∈ [−1, 1], draw the known bounds on f given the following assumptions::

• f is convex.

• f is convex and 2-smooth.

• f is 2-smooth and 1
2 -strongly convex.

For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.17
Given some unknown differentiable function f : R → R where we know
f(1) = 1, f ′(1) = 1. Draw the known bounds on f given the following
assumptions:

• f is strictly convex.

• f is strictly convex and 2-smooth.

• f is 2-smooth and 1-strongly convex.
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For each case, draw an example of a function that satisfies the assumptions.

Exercise 1.18
Suppose that f : Rn → R ∪ {∞} is a strictly convex function.

1. Suppose that a point x? exists such that f(x?) ≤ f(x) for all x ∈ Rn. Show
that x? is the unique minimizer of f .

2. Provide a strictly convex f whose minimum is not attained by any point
x?.

For strongly convex functions (which are also strictly convex) the minimum al-
ways exists.

Exercise 1.19
Show for each of the following convex functions if it is smooth, strongly convex,
strictly convex, or none of the above. Draw/plot the functions and decide from
the drawings.

1. f(x) =

{
− log(x) if x > 0

∞ if x ≤ 0

2. f(x) =

{
1
x if x > 0

∞ if x ≤ 0

3. f(x) = x

4. f(x) = 1
2x

2

5. f(x) = |x|

6. f(x) =

{
1
2x

2 if |x| ≤ 1

|x| − 1
2 else

7. f(x) = ex

8. f(x) = x4

Exercise 1.20 (H) (?)
A differentiable function f : Rn → R is convex if and only if

f(y) ≥ f(x) + 〈∇f(x), y − x〉 (1.1)

holds for all x, y ∈ Rn.

1. Provide a nonconvex differentiable function f and a point y for which (1.1)
does not hold.
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2. Prove the result.

Exercise 1.21 (?)
The indicator function of a set C is defined as

ιC(x) :=

{
0 if x ∈ C

∞ else

Show the following.

1. Let K ∈ Rm×n be a matrix, b ∈ Rm be a vector, x ∈ Rn and define the
convex set C := {x : Kx− b = 0}. Show that

ιC(x) = sup
µ

µT (Kx− b)

where µ ∈ Rm.

2. Let g : Rn → Rm be a convex function and define the convex set
C := {x : g(x) ≤ 0}. Show that

ιC(x) = sup
µ≥0

µT g(x)

where µ ∈ Rm.

Exercise 1.22 (?)
Suppose that f is convex and assume that x? is locally optimal. That is, for all
x such that ‖x − x?‖ ≤ δ, it satisfies f(x?) ≤ f(x). Show that x? is a global
minimum.

Exercise 1.23 (?)
Jensen’s inequality:

f(
n∑

i=1

θixi) ≤
n∑

i=1

θif(xi)

holds for convex functions f for all n ≥ 2, where θi ≥ 0, and
∑n

i=1 θi = 1. For
n = 2, it reduces to the convexity definition. Prove the result for n = 3.
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Hints
Hint to exercise 1.2
A matrix Q ∈ Rn×n is positive semidefinite if and only if Q is symmetric (Q = QT )
and xTQx ≥ 0 for all x ∈ Rn. This second condition is equivalent to that all
eigenvalues are nonnegative.

Hint to exercise 1.9
A function g : Rn → R is convex if

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y)

for all x, y ∈ Rn and θ ∈ [0, 1].

Hint to exercise 1.11
Prove that epig = epig1∩epig2 in the second subproblem and conclude convexity
from that.

Hint to exercise 1.16
See Exercise 1.15 for the smoothness and strong-convexity bounds.

Hint to exercise 1.20
The directional derivative at x in direction d satisfies

lim
θ→0

f(x+ θd)− f(x)

θ
= ∇f(x)Td.
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Chapter 2

Subdifferentials and Proximal
Operators

Exercise 2.1
Compute the subdifferentials for the following convex functions.

1. f(x) = 1
2‖x‖

2
2

2. f(x) = 1
2x

THx+ hTx with H positive semidefinite

3. f(x) = |x|

4. f(x) = ι[−1,1](x)

5. f(x) = max(0, 1 + x) (hinge loss)

6. f(x) = max(0, 1− x)

Exercise 2.2
Consider the following even nonconvex function f .

2

2-2

f(x)

x
x1

x2

x3

1. Compute (approximate) gradient and subdifferential at x1, x2, and x3.

2. As which points x1, x2, and x3 do Fermat’s rule hold?

Exercise 2.3
Figure (a) depicts ∂f(x) and Figure (b) depicts ∂g(y).
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(a) (b)

1. Is x a minimum to f?

2. Is y a minimum to g?

3. Is f differentiable at x

4. Is g differentiable at y

5. Draw/explain examples of functions f and g that comply with the figure.

Exercise 2.4
Consider the following set-valued operators A : R → 2R.

• Which are monotone?

• Which can be subdifferentials of convex functions?

x

A

a.

x

A

b.

x

A

c.

x

A

d.

Exercise 2.5
Let σ : R → R be differentiable and monotone. Prove or provide a
counter-example to that the following functions are convex.

1. f(x) = (
∫
σ(y)dy)(x) (means primitive function of σ).
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2. f(x) = ‖σ(x)‖22.

Exercise 2.6
The subdifferentials ∂f of two functions f : R → R are drawn below.

x

∂f

a.

x

∂f

b.

1. Are the correspoding functions f convex?

2. Can you find the x∗ that minimizes f . If so, where is it?

3. Can you compute the optimal value f(x∗)?

4. Draw examples of corresponding f .

Exercise 2.7
Suppose that f : R → R satisfies f(−1) = 1, ∂f(−1) = {−1}, f(1) = 1 and
∂f(1) = {1}.

1. Draw a function that lower bounds f .

2. Compute a lower bound to the optimal value of f .

3. Draw a function f that complies with the requirements.

Exercise 2.8
Assume that f : Rn → R ∪ {∞} is σ-strongly convex. Show that

f(y) ≥ f(x) + sT (y − x) + σ
2 ‖x− y‖22

for all x ∈ dom∂f and y ∈ Rn and s ∈ ∂f(x).

Exercise 2.9

1. Suppose that f : Rn → R is β-smooth, i.e., ∇f is β-Lipschitz continuous.
Show that g(x) = f(Ax+ b) with A ∈ Rn×m and b ∈ Rn is β‖A‖2-smooth.
Here, ‖A‖ = ‖AT ‖ is the operator norm of A (and AT ) that satisfies
‖Ax‖2 ≤ ‖A‖‖x‖2 for all x.
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2. Suppose that f : Rn → Rn is σ-strongly convex. Show that
g(x) = f(Ax+ b) is not necessarily strongly convex. (However, if A is
positive definite, symmetric with all eigenvalues positive, g is strongly
convex.)

Exercise 2.10
The subdifferentials of four convex functions f are drawn below. State for each
if f is differentiable, ∇f is Lipschitz continuous, f strongly convex. Also,
estimate Lipschitz and strong convexity constants (given the axes are equal).

(a) (b)

(c) (d)

Exercise 2.11 (?)
Suppose that g(x) =

∑n
i=1 gi(xi), where x = (x1, . . . , xn). Show that s ∈ ∂g(x) if

and only if si ∈ ∂gi(xi), where s = (s1, . . . , sn).

Exercise 2.12 (?)
Assume that f : Rn → R ∪ {∞} is convex and that there exists y with f(y) < ∞.
Show that ∂f(x) is empty for x 6∈ domf , i.e., for x such that f(x) = ∞.

Exercise 2.13 (?)
Show that the subdifferential of the indicator function of a nonempty set C is
the normal cone to C.

Exercise 2.14
Compute the proximal mapping for the following convex functions.
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1. f(x) = 1
2‖x‖

2
2

2. f(x) = 1
2x

THx+ hTx with H positive semidefinite

3. f(x) = |x|

4. f(x) = ι[−1,1](x)

5. f(x) = max(0, 1 + x)

6. f(x) = max(0, 1− x)

Exercise 2.15
Suppose that g(x) =

∑n
i=1 gi(xi), where x = (x1, . . . , xn). Show that

proxγg(z) =

proxγg1(z1)...
proxγgn(zn)

 .

Exercise 2.16 (?)
Provide a monotone operator A : Rn → 2R

n that is monotone but not the subdif-
ferential of a function.

Hints
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Chapter 3

Conjugate Functions and
Duality

Exercise 3.1
Compute the conjugates for the following convex functions.

1. f(x) = 1
2‖x‖

2
2

2. f(x) = 1
2x

THx+ hTx with H ∈ Rn×n positive semidefinite

3. f(x) = ι[−1,1](x)

4. f(x) = |x|

5. f(x) = max(0, 1 + x)

6. f(x) = max(0, 1− x)

Exercise 3.2
Assume that g(x) =

∑n
i=1 gi(xi), i.e, g is separable. Show that

g∗(s) =
∑n

i=1 g
∗
i (si), where g∗i is the conjugate of gi.

Exercise 3.3 (H)
Compute the conjugates of the following functions f : Rn → R ∪ {∞}.

1. f(x) = ‖x‖1.

2. f(x) = ι[−1,1](x), where 1 = (1, . . . , 1).

Exercise 3.4 (H) (?)
Let f(x) = ‖x‖2.

1. Compute the conjugate f∗ via the following steps.
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(a) Show that f∗(s) ≥ 0 for all s.
(b) Show that f∗(s) ≤ 0 for all s with ‖s‖2 ≤ 1.
(c) Show that f∗(s) = ∞ for all s with ‖s‖2 > 1.
(d) Combine there results to state f∗(s).

2. Use the conjugate to compute the subdifferential of f .

Exercise 3.5
Let f be the nonconvex function in the following figure. It satisfies f(−1) = 0,
f(0) = 1, f(1) = −1, f(2) = 0, f(x) = ∞ for all x ∈ R\{−1, 0, 1, 2}.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

1. Draw the conjugate f∗ of f .

2. Draw the bi-conjugate f∗∗ of f .

Exercise 3.6 (?)
Let ∆ be the probability simplex

∆ = {x : xi ≥ 0 and
∑
i

xi = 1}

and let D be the similar set

D = {x : xi ≥ 0 and
∑
i

xi ≤ 1}.

1. Let f = ι∆, where ι is the indicator function, show that f∗(s) = maxi(si),
i.e., the element-wise max.

2. Provide the conjugate of the maxi(si).

3. Let f = ιD, where ι is the indicator function, show that
f∗(s) = max(0,maxi(si)), where maxi(si) is the element-wise max.

4. Provide the conjugate of max(0,maxi(si)).
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f(x) =

{
0 if all xi ≥ 0 and

∑
i xi = 1

∞ else.

Show that f∗(s) = max(si), i.e., the elementwise max.

Exercise 3.7
Show the following.

1. That

inf
x

f(x) = −f∗(0)

2. That the set of minimizers, Argminx f(x), for a convex function f satisfies

Argmin
x

f(x) = ∂f∗(0).

Exercise 3.8
Consider the following set-valued operators A : R → 2R.

1. Draw the inverses, A−1 : R → 2R.

2. Which operators A are functions f : R → R?

3. Which operator inverses A−1 are functions f : R → R?

a. b.

c. d.

Exercise 3.9
Consider the following four subdifferentials ∂f of convex functions. Decide ∂f∗,
i.e., the subdifferential of the conjugate.
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x

∂f(x) = σx

a.

x

∂f(x) = 0

b.

x

∂f(x)

−1

1

c.

x

∂f(x)

−1

1

−1

1

d.

Exercise 3.10
Assume that f is convex. Show that proxγf (z) = (I + γ∂f)−1(z), where the
inverse means the operator inverse.

Exercise 3.11 (H)
Compute the proximal mapping for the following convex functions. Use
graphical arguments and that proxγf (z) = (I + γ∂f)−1(z).

1. f(x) = |x|

2. f(x) = ι[−1,1](x)

3. f(x) = max(0, 1 + x)

4. f(x) = max(0, 1− x)

Exercise 3.12 (H)

1. Show that proxf (z) + proxf∗(z) = z.

2. Show that (γf)∗(s) = γf∗(γ−1s).

3. Show that prox(γf)∗(z) = γproxγ−1f∗(γ−1z).

4. Show that proxγf (z) + γproxγ−1f∗(γ−1z) = z.
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Exercise 3.13
Compute the proxf∗ , i.e., the prox of the conjugate, for the following f .

1. f(x) = 1
2x

THx+ hTx with H positive definite

2. f(x) = max(0, 1 + x)

3. f(x) = max(0, 1− x)

Exercise 3.14
Consider a primal problem the form

minimize f(x) + g(x)

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are (closed) convex functions
and relint dom f ∪ relint dom g 6= ∅

1. Show that this problem is equivalent to finding x, y ∈ Rn such that

x ∈ ∂f∗(y)

x ∈ ∂g∗(−y)

2. Show that this inclusion problem is equivalent to the following dual
optimality condition

0 ∈ ∂f∗(y)− ∂g∗(−y) (3.1)

that solves the dual problem

minimize f∗(y) + g∗(−y)

3. Given a solution y? to the dual condition (3.1) and a subgradient selector
function, sf∗(y) : Rn → Rn such that sf∗(y) ∈ ∂f∗(y). Can you recover a
primal solution x?? What if f∗ is differentiable?

Exercise 3.15 (H)
Consider primal problems of the form

minimize f(Lx) + g(x)

where f : Rm → R ∪ {∞}, g : Rn → R ∪ {∞}, and L ∈ Rm×n. Derive the dual
problem

minimize f∗(y) + g∗(−LT y).
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Exercise 3.16
Consider primal problems of the form

minimize f(Lx) + g(x)

where f : Rm → R ∪ {∞}, g : Rn → R ∪ {∞}, and L ∈ Rm×n. State the dual
problem and show how to recover a primal solution from a dual solution.

1. f(y) = λ
2‖y‖

2
2 where λ > 0 and g(x) =

∑n
i=1 xi + ι[−1,0](xi). Assume m = n

and L is invertible.

2. f(y) = ι[−1,1](y) and g(x) = λ
2‖x‖

2
2 − bTx where λ > 0.

Exercise 3.17 (?)
Prove f(x0) = sT0 x0 − f∗(s0) ⇔ s0 ∈ ∂f(x0) via the following steps.

1. Show that f(s) + f(x) ≥ sTx for all x, s.

2. Suppose that s0 ∈ ∂f(x0). Show that f∗(s0) ≤ sT0 x0 − f(x0), i.e.,
f∗(s0) = sT0 x0 − f(x0).

3. Suppose that f(x0) = sT0 x0 − f∗(s0). Show that s0 ∈ ∂f(x0).

Exercise 3.18 (?)
Show that

1. s ∈ ∂f(x) implies x ∈ ∂f∗(s).

2. x ∈ ∂f∗(s) implies s ∈ ∂f∗∗(x).

3. Suppose f (closed) convex, then

s ∈ ∂f(x) ⇔ x ∈ ∂f∗(s)

i.e., subdifferential of conjugate is inverse of subdifferential

∂f∗ = (∂f)−1 and ∂f = (∂f∗)−1

Exercise 3.19 (?)
Let g(x) = f(Lx+ c) where f : Rm → R ∪ {∞} is closed convex, L ∈ Rm×n and
c ∈ Rm and that relint domg 6= ∅. Show that

g∗(s) = min
µ

(f∗(µ)− cTµ : s = LTµ).
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Hints
Hint to exercise 3.3
Use the results from Exercise 3.1 and 3.2.

Hint to exercise 3.4
Cauchy-Schwarz inequality sTx ≤ ‖x‖2‖s‖2 holds for all x, s.

Hint to exercise 3.11
The subgradients for all functions have already been computed in previous ex-
ercises.

Hint to exercise 3.12
For the first subproblem, let x = proxf (z), introduce u = z − x and show that
u = proxf∗(z). To prove this, use Fermat’s rule on the definition of the prox.

Hint to exercise 3.15
A very similar approach to Exercise 3.14 can be used.
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Chapter 4

Learning

Exercise 4.1
Consider f1(x) =

1
2‖Ax− b‖22, f2(x) = ‖x‖1, f3(x) = ‖x‖2, and f4 =

1
2‖x‖

2
2. For

each fi answer the following.

1. Is fi convex?

2. Is fi L-smooth? What is the smallest L?

3. Is fi µ-strongly convex? What is the largest µ?

Exercise 4.2
In the same plot, sketch and compare the function | · | and | · |2. Use the results
to pair the linear models plotted below with the following regression problems
that generated them.

Problem 1: min
θ

∑n

i=1
|xiθ − yi| = min

θ
‖XT θ − y‖1

Problem 2: min
θ

∑n

i=1
|xiθ − yi|2 = min

θ
‖XT θ − y‖22

The × markers are the data points (xi, yi) and the solid lines are the resulting
functions f(x) = θx

a. b.

Exercise 4.3
Consider a one dimensional regression problem with data xi ∈ R and yi ∈ R.
We know that the dependency of y on x is periodic with length 1, i.e.

22



y = f(x) = f(x+ 1) where f is the true relationship between x and y and what
we wish to identify. yi could for instance be an account balance and xi could be
time. It is reasonable to assume that the a spending/income patterns are
similar from month to month. Spending depends of course on other things
than just time but for simplicity we only consider the one dimensional case.
To identify the relationship between xi and yi we choose a parameterized
model according to y ≈ mw(x) = φ(x)Tw. w is the parameters and φ is a feature
map to be determined. Periodic functions with period 1 can be written as a
Fourier series

a0
2 +

∞∑
n=1

an cos(2πnx) + bn sin(2πnx).

Use a truncated series, i.e. only use the first N terms of the sum, to design the
feature map φ.

Exercise 4.4
Consider the Lasso problem

min 1
2‖Ax− b‖22 + λ‖x‖1

with λ ≥ ‖AT b‖∞. Show x = 0 is a solution.

Exercise 4.5
Given some data points xi ∈ Rn of some class yi ∈ {−1, 1} we model the
probability of some data point x belonging to class y = 1 or y = −1 with the
following logistic model.

P (y = 1) = p1(x) =
1

1 + e−(wT x+b)

P (y = −1) = p−1(x) = 1− p1(x) =
1

1 + e(wT x+b)

where w ∈ Rn and b ∈ R are the model parameters. With this model, the
likelihood for measuring the data (xi, yi) for i ∈ {1, ..., N} is

lw(x, y) =
∏N

i=1
pyi(xi)

The model parameters w and b should be chosen such that this likelihood is
maximized.
Show that the maximum likelihood estimate of (w, b) is given by the following
logistic regression problem

min
w,b

∑N

i=1
log(1 + e−yi(x

T
i w+b))

Is this problem convex? L-smooth? µ-strongly convex?

23



Exercise 4.6
Consider the logistic regression problem in Exercise 4.5. Show that the
problem is equivalent to

min
w,b

∑N

i=1

(
log(1 + ex

T
i w+b)− yi(x

T
i w + b)

)
if the classes are labeled with {0, 1} instead of {−1, 1}.

Exercise 4.7
Consider the logistic regression problem without regularization

min
w,b

∑N

i=1

(
log(1 + ex

T
i w+b)− yi(x

T
i w + b)

)
,

where xi ∈ Rn are data and yi ∈ {0, 1} are labels. Assume that there exists
(w̄, b̄) such that xTi w̄ + b̄ < 0 for all i with yi = 0 and xTi w̄ + b̄ > 0 for all i with
yi = 1. Show that the infimal value of the cost is 0, and that no (w, b) exists
that attains the value.

Exercise 4.8
Consider the typical supervised learning problem

min
w

∑n

i=1
L(mw(xi), yi)

where xi ∈ Rd is the data, yi ∈ Rl the response variable, mw : Rd → Rl the
parameterized model we wish to train, and L : Rd × Rl → R the loss comparing
the model output mw(xi) with the known correct output yi.
Assume L(ŷ, y) is convex in ŷ prove or disprove the following statements.

1.
∑n

i=1 L(mw(xi), yi) is convex if a feature mapped model is used,
mw(x) = wTφ(x) where φ : Rd → Rf .

2.
∑n

i=1 L(mw(xi), yi) is convex if a DNN model is used,
mw(x) = σ1(w

T
1 σ2(w

T
2 ...σD(w

T
Dx)...)) where σi are some activation

functions.

Exercise 4.9
Show that a kernel matrix K is positive definite, i.e. a matrix whose elements
are given by

Kij = k(xi, xj)

where xi,∀i ∈ {1, ..., n} are elements in some input space X and k is a proper
kernel. k is proper if it is given by an inner product in some inner product
space F , k(x, y) = 〈φ(x), φ(y)〉F where φ : X → F . You may assume all things
are defined over real numbers and not complex numbers.
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(Note, the converse is also true. If K � 0, then there exist some F and φ such
that k(x, y) = 〈φ(x), φ(y)〉F . For more information, see Mercer’s theorem.)

Exercise 4.10
Consider the SVM (type) problem with bias term

minimize
w,b

1T max(0, 1− (XTw + b1))︸ ︷︷ ︸
f(L(w,b))

+ λ
2‖w‖

2
2︸ ︷︷ ︸

g(w,b)

where L = [XT ,1].

1. Derive the dual problem minµ(f
∗(µ) + g∗(−LTµ)).

2. Show how to recover a primal solution from a dual solution.

Exercise 4.11
Consider a classification problem with some data xi ∈ Rp of some
corresponding class yi for i ∈ {1, ..., n}. There are two possible classes
yi ∈ {1, 2}.
We define a score function for each class m1(x) = wT

1 x and m2(x) = wT
2 x. The

idea is for the function to produce a high value if the tested data point is in the
class, mλ(xi) >> 0 if yi = λ, otherwise a low score, mλ(xi) << 0 if yi 6= λ.
We further define the confidence in the score for x being of class 1 as the
difference of the score for two classes, c1(x) = m1(x)−m2(x). Similarly we
define the class 2 confidence as c2(x) = m2(x)−m1(x).
The parameters, w1 and w2, of the models can be found by minimizing the
doubt (low confidence) on the known data, i.e.

min
w1,w2

∑n

i=1
φ(cyi(xi))

where φ : R → R is a loss function that penalize doubt (low confidence), and
cyi(xi) is the confidence of our model for xi being the know correct class yi,
something that obviously want to be high. After solving this problem a
prediction for a new unseen data point x is simply the class with the highest
confidence, argmaxλ∈{1,2} cλ(x)

• Draw/plot the following functions

– h(x) = max(0, 1− x) (Hinge-loss)
– l(x) = log(1 + e−x) (Logistic loss)

• Show that using φ(x) = l(x) is equivalent to logistic regression, see
Exercise 4.5.

• Show that using φ(x) = h(x) is equivalent to an unregularized SVM,
minw

∑n
i=1 max(0, 1− yix

T
i w).
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• Other loss functions can of course be used. However, to also try to reward
(negative loss) correct confidence/predictions can be problematic, for
instance φ(x) = 1− x can not be used, why?

Exercise 4.12
Consider the classification problem setup from Exercise 4.11 we now have K
classes, yi ∈ {1, ...,K}. This problem can be handled in many different ways.
Arguably the simplest way is training several binary classifiers in a
one-against-all or one-against-one fashion. Here we will instead look at two
ways of changing the confidence measurement to consider multiple classes.
We define the average confidence as

cAλ (x) =
1
K

∑K

k=1
(mλ(x)−mk(x)) =

1
K

∑K

k=1
(wT

λ x− wT
k x)

= wT
λ x− 1

K

∑K

k=1
wT
k x

and the worst case confidence as

cMλ (x) = min
k 6=λ

(mλ(x)−mk(x)) = min
k 6=λ

(wT
λ x− wT

k x)

= wT
λ x− max

k 6=λ
wT
k x.

With these definitions we can define a prediction in the same way as before, i.e.
we take the highest confidence prediction argmaxλ∈{1,...,K} cλ(x).
Using hinge-loss and adding a square 2-norm regularization, show that the
minimization of the doubt is equivalent to the following problems.

1. Average confidence:

min
w

∑n

i=1
max(0, 1−AT

i X
T
i w)︸ ︷︷ ︸

f(ATXTw)

+ γ
2‖w‖

2
2︸ ︷︷ ︸

g(w)

,

where xi, wi ∈ Rp, w = (w1, . . . , wK) ∈ RpK , and

Xi =

xi . . .
xi

 ∈ RpK×K , Ai = eyi − 1
K1 ∈ RK .

1 is the vector of all ones in RK while ei is the unit vector in RK of all
zeros except the i:th element.
Further we have f : Rn → R satisfying f(x) =

∑n
i=1 max(0, 1− xi),

X = [X1, ..., Xn] ∈ RpK×Kn, and A = blkdiag(A1, ..., An) ∈ RKn×n.

2. Worst case confidence:

min
w

∑n

i=1
fi(M

T
i X

T
i w)︸ ︷︷ ︸

f(MTXTw)

+ γ
2‖w‖

2
2︸ ︷︷ ︸

g(w)

,

26



where wi, w, xi, Xi, and X are the same for the average confidence. The
functions, fi : RK → R satisfy fi(ui) = max(dyi − ui) and

di = 1 − ei ∈ RK , Mi = eyi1T − I ∈ RK×K

where I is the identity matrix in RK×K while 1 and ei are the same for
the average confidence.
Further, M = blkdiag(M1, ...,Mn) ∈ RKn×Kn and the function
f : RnK → R satisfies f(u) =

∑n
i=1 fi(ui) where u = (u1, . . . , un) ∈ RKn and

ui ∈ RK .

Exercise 4.13
Consider the average confidence multiclass SVM problem from Exercise 4.12.

1. Find the dual problem

min
µ

f∗(µ) + g∗(−XAµ).

2. Show how to recover a primal solution from a dual.

Exercise 4.14
Consider the worst case confidence multiclass SVM problem from Exercise
4.12.

1. Find the dual problem

min
µ

f∗(µ) + g∗(−XMµ).

2. Show how to recover a primal solution from a dual.

Hints
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Chapter 5

Algorithms

Exercise 5.1
Suppose that f is convex and differentiable. Consider the gradient descent
algorithm

xk+1 = xk − λ∇f(xk)

where λ > 0. Let x? be a fixed point of this algorithm. Show that x? minimizes
f .

Exercise 5.2
Suppose that f is convex and x is such that x = proxγf (x) for γ > 0. Show that
x minimizes f .

Exercise 5.3
Suppose that f and g are (closed) convex, f is differentiable, and x is such that
x = proxγg(x− γ∇f(x)) for γ > 0. Show that x minimizes f + g.

Exercise 5.4
Consider the problem

inf f(x)

and some iterative algorithm that generates a sequence x0, x1, x2, ... where the
function values decrease, i.e.

f(xk+1) ≤ f(xk).

1. Give an example of of a function f where this does not imply the
convergence of the function values f(xk).

2. Assume the function is lower bounded f(x) ≥ B. Prove that the sequence
of function values converge to some value f(xk) → b.
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3. Give an example of a function f that is bounded below and sequence xk

where b 6= inf f(x).

Exercise 5.5
Let f be an L-smooth function and consider the gradient descent algorithm, i.e.
select x0 ∈ Rn and for all k ∈ N

xk+1 = xk − γ∇f(xk)

where 2
L > γ > 0. Assume that f is lower bounded by B, f(x) ≥ B for all x.

1. Show that the sequence (f(xk))k∈N satisfies

f(xk+1) ≤ f(xk)− γ(1− L
2 γ)‖∇f(xk)‖22.

2. Show that ∇f(xk) → 0 as k → ∞.

3. Assume that f is strongly convex, show that xk → x? where
f(x?) = min f(x).

Assuming that at least one minimum exists, it is possible to show that xk → x?

even in the smooth convex as well. However, it is not enough that
f(xk+1) ≤ f(xk) and ∇f(xk) → 0.

4. Give an example of a lower bounded convex function f and sequence xk

such that f(xk+1) ≤ f(xk) and ∇f(xk) → 0 but where f(xk) 6→ inf f(x).

Exercise 5.6
Consider the proximal point algorithm, i.e. select x0 ∈ Rn and for all k ∈ N

xk+1 = proxγf (x
k)

where γ > 0.

1. Show that (f(xk))k∈N is a decreasing sequence according to

f(xk+1) ≤ f(xk)− 1
2γ ‖x

k+1 − xk‖22.

2. Assume that f is lower bounded by B (i.e., B is such that f(x) ≥ B for all
x). Show that ‖xk+1 − xk‖ → 0 as k → ∞.

3. Assume (closed) convexity of f . Show that ‖xk+1 − xk‖ → 0 implies that
dist∂f(xk)(0) → 0 where dist∂f(x)(0) = infs∈∂f(x) ‖s− 0‖, i.e. the distance
between the subdifferential and zero becomes arbitrary small.

4. Assume strong convexity of f , show that xk → x? where f(x?) = min f(x).
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Note about the last point. There exist weaker conditions than strong convexity
for the sequence to converge but strong convexity is arguably the simplest.

Exercise 5.7
Consider the minimization problem

min f(x) + g(x)

and the proximal gradient method

xk+1 = proxλg(x
k − λ∇f(xk)).

where λ > 0. Assume f is L-smooth and (closed) convexity of g. Prove that it is
a descent method for sufficiently small λ and find the upper bound on λ.

Exercise 5.8
Which of the algorithms

• Gradient Descent

• Coordinate Gradient Descent

• Proximal Gradient

• Coordinate Proximal Gradient

are applicable to the minimization problem minx∈Rn h(x) where h(x) is

1. 1
2‖Ax− b‖22, where A ∈ Rm×n,m < n

2. 1
2x

TQx+ bTx+ ‖x‖1, where Q � 0

3. 1
2‖Ax− b‖22 + ‖x‖22, where A ∈ Rm×n,m < n

4. 1
2‖Ax− b‖22 + ‖x‖2, where A ∈ Rm×n,m < n

5. ιAx=b(x) + ι[−1,1](x)

6. e‖x−y‖42 + ι[−1,1](x)

7. 1
2x

TQx+ ‖Dx‖1, where Q � 0, D diagonal

8. 1
2x

TQx+ ι[−1,1](Lx), where Q � 0, L ∈ Rm×n

9. log(1 + e−wT x) + 1
2

∑
i max(0, xi)2

Exercise 5.9
For each of the algorithms and functions in Excercise 5.8, which of the algo-
rithms are applicable to some dual formulation of each of the problems?
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Exercise 5.10
Estimate the per-iteration complexity for each of the primal algorithms from
Exercise 5.8 on the problems

• 1
2x

TQx+ bTx+ ‖x‖22, where Q � 0.

• log(1 + e−wT x) +
∑

i max(0, xi)2

Exercise 5.11 (?)
Show that it is possible to implement coordinate gradient (and coordinate proxi-
mal gradient) for the function log(1+e−wT x)+

∑
i max(0, xi)2 with a per-iteration

cost that doesn’t grow with the number of elements in x.

Exercise 5.12
Consider the problem

minimize
x

xTQx+ qTx, where Q � 0

with the gradient descent algorithm xk+1 = xk − γ∇f(xk) where γ ∈ (0, 2/L)
and L = ‖Q‖.

1. Show that ‖xk+1 − x∗‖ ≤ ‖(I − γQ)‖‖xk − x∗‖ and that ‖I − γQ‖ < 1,
where x∗ is the solution to the problem.

2. Let γ = 1/L and find an expression of ‖(I − γQ)‖ in terms of the
eigenvalues of Q.

Let the (geometric) convergence rate r be defined as the smallest r so that
‖xk − x∗‖ ≤ rk‖x0 − x∗‖ holds.

3. Let Q =

[
ε 0
0 1

]
where 0 < ε � 1. What is the worst case convergence rate

r we can expect given the result above? Let q = 0, can you find a point x0
where this is the practical rate.

4. Let Q =

[
ε ε/10

ε/10 1

]
. The eigenvalues of this matrix is approximately 1

and ε. Gradient descent will therefore be slow also on this problem. To
improve the convergence rate, we want to find a variable change x = V y,
where V is invertible, so that the equivalent problem
minimizey yTV TQV y + qTV y has better properties. This is often called
preconditioning. Find a diagonal matrix V so that the diagonal elements
in V TQV are 1.

5. What are (rougly) the eigenvalues of the new matrix V TQV ? What can
we expect in terms of convergence rate of ‖yk − y∗‖?

6. When we have a problem where the proximal gradient method is needed
instead of just gradient descent, why do we usually have to limit
ourselves to diagonal scalings V ?
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Exercise 5.13 (?)
Let operator T be a contraction, i.e. ‖Tx− Ty‖ ≤ L‖x− y‖ with L < 1 for all
x, y. Given some x0, show that the following fixed point iteration

xk+1 = Txk

converge to a fixed point, x? = Tx?, i.e. ‖xk − x?‖ → 0 as k → ∞.

Exercise 5.14
One interpretation of coordinate descent is that you restrict the function to a
line and take a gradient step of the function along this line. Let the direction
we want to take a gradient step along be coordinate i, i.e. the direction ei,
where index i of ei is 1 and the others are 0. Let fi,x(α) := f(x+ eiα), we can
then formulate the problem as taking a gradient step of fi,x from α0 = 0, i.e

ᾱ = α0 − γi∇fi,x(α0)

If fi,x is Li-smooth, then we know that fi,x(ᾱ) ≤ fi,x(α0) as long as γi ∈ (0, 2/Li).
With α0 = 0 we therefore get a non-increasing sequence

f(xk+1) = f(xk + eiᾱ) = fi,xk(ᾱ) ≤ fi,xk(α0) = f(xk)

when xk+1 = xk + eiᾱ.

• Consider the function f(x) = 1
2‖Ax− b‖2. Find the smoothness constants

Li, i.e the bounds on γi.

• Show that Li ≤ L for all i, where L is the smoothness constant for f . I.e
we are able to take longer steps with the coordinate gradient algorithm
than with regular gradient descent.

Exercise 5.15
Consider the minimization problem

min
x∈Rn

f(x) +
∑n

i=1
gi(xi)

and the proximal coordinate descent algorithm

Choose i from {1, ..., n}
xk+1
i = proxγgi(x

k
i − γ∇if(x

k))

xk+1
j = xkj ∀j 6= i

where ∇if(x) is the i:th coordinate of the gradient and γ > 0. Assume
L-smoothness of f , (closed) convexity of gi and that each i ∈ {1, ..., n} is chosen
an infinite number of times.
Show that this is an descent method for sufficiently small γ. Find the upper
bound on γ.
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Exercise 5.16
Consider the problem and the proximal coordinate descent algorithm from
Exercise 5.15 but allow for coordinate-wise step-sizes,

xk+1
i = proxγigi(x

k
i − γi∇if(x

k))

xk+1
j = xkj ∀j 6= i

where γi > 0. Find better upper bounds for each γi that still ensures descent
under the following refined smoothness assumption on f .
For all x, y is

f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2(y − x)TM(y − x)

satisfied for some positive definite M . Since 1
2(y−x)TM(y−x) ≤ λmax(M)

2 ‖y−x‖2
this implies regular smoothness. Ordinary L-smoothness can also be written on
this form with M = LI where I is the identity matrix. However, allowing for
arbitrary quadratic upper bound on f means it can be made tighter.

Exercise 5.17 (*)
In this exercise we want to study the convergence of gradient descent and
coordinate gradient descent. Consider the simple problem

p∗ = min
x

1

2
‖Ax− b‖2,

where we assume that A ∈ Rm×n. Let m = 40, n = 20 and generate a random
matrix A and random vector b. The optimal point x∗ can in this case can be
found directly using the least squares solution in Julia: xsol=A\b.

• Implement gradient descent, and plot the cost 1
2‖Axk − b‖2 − p∗ as a

function of the iteration k. Note that you can compute and save the
matrix ATA and the vector AT b to reduce the number of computations
needed at each iteration.

• Implement coordinate gradient descent and compare the cost
1
2‖Axk − b‖2 − p∗ to that of the full gradient descent. Take make the
comparison fair, use the same initial point x0 and same step-length, let
the number of iterations be n times as many and plot the cost for every n
iterations.

• Implement coordinate gradient descent with the step-lengths computed
in Excercise 5.14 and make the same comparison.

Exercise 5.18 (H)
Consider the following problem of minimizing the function F (x) where

F (x) = 1
N

∑N

i=1
fi(x).
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The stochastic gradient method is

Sample i uniformly from {1, ..., N}
xk+1 = xk − γk∇fi(x

k).

Note that E[∇fi(x)|x] = ∇F (x) given that x is known. Further assume that the
variance is bounded, E[‖∇fi(x)−∇F (x)‖2|x] ≤ σ2 for all x, and that F is lower
bounded and L-smooth.

1. Show that stochastic gradient descent satisfies

E[F (xk+1)|xk] ≤ F (xk)− γk(1− L
2 γ

k)‖∇F (xk)‖2 + (γk)2Lσ
2

2 .

2. Show that it is possible for E‖∇F (xk)‖ → σ if γk = 1
L .

3. Show that mink≤T E‖∇F (xk)‖ → 0 as T → ∞ if γk = 1
k .

4. Show that it is possible for E‖∇F (xk)‖ → c > 0 if γk = 1
k2

for some
constant c.

Exercise 5.19 (*)
In this exercise we want to study the convergence of stochastic gradient
descent. Consider the same problem as in Exercise 5.17, where we can write
the cost as 1

2‖Axk − b‖2 = 1
2

∑
i(Aix

k − bi)
2, where Ai is row i in A. Implement

the stochastic gradient algorithm for this problem. Note that you may need
significantly more iterations with this algorithm compared to Exercise 5.17.

• Run the algorithm with a few different constant step sizes γ, for example
λmax, λmax/10, λmax/100, where λmax is the largest eigenvalue of ATA.
What happens with the error 1

2‖Axk − b‖2 − p∗ after many iterations?

• Run the algorithm with a decreasing step size, for example γ/k or 10γ/k.
How does the behavior differ?

• What happens if we let gamma decrease faster, e.g. 10γ/k2?

Hints
Hint to exercise 5.18

E‖X − EX‖2 = E‖X‖2 − ‖EX‖2
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Solutions to Chapter 1

Solution 1.1

1. Figures b. and d. represent convex sets since the straight line connecting
any two points with the sets are contained within the sets.
Figures a. and c. represent nonconvex sets since the lines drawn below
between two points in the respective sets are partially outside the sets.

a. b.

c. d.

2. Figures b. and d. are convex so there exist supporting hyperplanes at the
entire boundary.

a. b.

c. d.

3. Figures b. and d. are convex so the convex hull is the set itself.

35



a. b.

c. d.

Solution 1.2

1. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then Ax = b,
Ay = b, and

Az = A(θx+ (1− θ)y) = θAx+ (1− θ)Ay = θb+ (1− θ)b = b.

Hence z ∈ S and the set is convex. (This is an affine subspace/intersection
of hyperplanes.)

2. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then Ax ≤ b,
Ay ≤ b, and

Az = A(θx+ (1− θ)y) = θAx+ (1− θ)Ay ≤ θb+ (1− θ)b = b.

Hence z ∈ S and the set is convex. (This is a polytope /intersection of
halfspaces.)

3. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then x ≥ 0, y ≥ 0,
and

z = θx+ (1− θ)y ≥ 0.

Hence z ∈ S and the set is convex. (This is the non-negative orthant.)

4. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then, since θ and
(1− θ) are positive,

z = θx+ (1− θ)y ≤ θu+ (1− θ)u = u

and

z = θx+ (1− θ)y ≥ θl + (1− θ)l = l.

Hence x ∈ S and the set is convex. (The constraints that defines the set
are called box-constraints.)
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5. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then ‖x‖2 ≤ 1,
‖y‖2 ≤ 1, and

‖z‖2 = ‖θx+ (1− θ)y‖2 ≤ θ‖x‖2 + (1− θ)‖y‖2 ≤ 1.

Hence z ∈ S and the set is convex. (This is the unit 2-norm ball, i.e. all
points with distance to the origin less than one.)

6. Consider n = 1, i.e., x ∈ R. Let x = −1, y = 1, and z = 1
2(x+ y) = 0. Then

−‖x‖2 = −1 and x ∈ S. Similarly −‖y‖2 = −1 and y ∈ S. However,
−‖z‖2 = 0 and z 6∈ S. Hence the set is not convex.

7. The condition −‖x‖2 ≤ 1 holds for all x ∈ Rn. Hence S = Rn, which is
convex.

8. Take (x, tx) ∈ S, (y, ty) ∈ S, θ ∈ [0, 1], and let
(z, tz) = θ(x, tx) + (1− θ)(y, ty). Then ‖x‖2 ≤ tx, ‖y‖2 ≤ ty, and

‖z‖2 = ‖θx+ (1− θ)y‖2 ≤ θ‖x‖2 + (1− θ)‖y‖2 ≤ θtx + (1− θ)ty = tz.

Hence z ∈ S and the set is convex. (This set is called a second order cone
and is shaped like an ice cream cone.)

9. Take X ∈ S, Y ∈ S, θ ∈ [0, 1], and let Z = θX + (1− θ)Y . Then xTXx ≥ 0
and xTY x ≥ 0 for all x ∈ Rn, and for arbitrary x ∈ Rn:

xTZx = xT (θX + (1− θ)Y )x = θxTXx+ (1− θ)xTY x ≥ 0.

In addition, Z is symmetric since X and Y are. Hence z ∈ S and the set is
convex.

10. Take x ∈ S, y ∈ S, θ ∈ [0, 1], and let z = θx+ (1− θ)y. Then x = a, y = a,
and

z = θx+ (1− θ)y = a.

Hence z ∈ S and the set is convex.

11. Consider n = 1, i.e., x ∈ R. Let x = a := −1, y = b := 1, and
z = 1

2(x+ y) = 0. Then z 6= a and z 6= b, hence z 6∈ S and the set is not
convex.

Solution 1.3

1. Intersection. Take x, y ∈ C. Then x, y ∈ C1 and x, y ∈ C2. Therefore, by
convexity of C1 and C2, we have for all θ ∈ [0, 1] that θx+ (1− θ)y ∈ C1 and
θx+ (1− θ)y ∈ C2. Hence θx+ (1− θ)y ∈ C which shows that it is convex.

2. Union. Take C1 = {0} and C2 = {1}. Then C = {0, 1}. This is not convex
since, e.g., 0.5 6∈ C.

Solution 1.4
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1. Affine. Let x ∈ V and y ∈ V . Then x = y = a and αx+ (1− α)y = a ∈ V for
all α ∈ R and x, y ∈ V . Hence the set is affine.

2. Not affine. Affine means that βx+ (1− β)y ∈ V for all choices of β ∈ R
and x, y ∈ V . But, for instance the choice of x = a, y = b and β = 2 is quite
obvious not in V .
For a numerical example we can take n = 1, a = −1, b = 1. Then
V = [−1, 1] while βx+ (1− β)y =, 2 ∗ (−1) + (−1) ∗ 1 = −3 6∈ V .

3. Affine. Take x, y ∈ V . This means ∃β1, β2 ∈ R such that

x = β1a+ (1− β1)b

y = β2a+ (1− β2)b

Then for all α ∈ R,

αx+ (1 − α)y

= (αβ1 + (1− α)β2)a+ (α(1− β1) + (1− α)(1− β2))b

= (αβ1 + (1− α)β2)a+ (1− (αβ1 + (1− α)β2))b

= σa+ (1− σ)b

where σ = αβ1 + (1− α)β2 ∈ R. Hence αx+ (1− α)y ∈ V and the set is
affine.

Solution 1.5
Figures (a), (b), and (d) are cones. Figures (a) and (b) (and (c)) are convex.

Solution 1.6
All sets are in Exercise 1.2 shown to be convex. It is left to decide which sets
that are cones.

1. Let x ∈ S, i.e., Ax = 0. Then A(αx) = αAx = 0 for all α ≥ 0. Hence,
αx ∈ S for all α ≥ 0 and S is a cone.

2. Let x ∈ S, i.e., Ax = b 6= 0. Then A(αx) = αAx = αb 6= b for all α 6= 1
(unless b = 0), and therefore αx 6∈ S. Hence S is not a cone.

3. Let x ∈ S, i.e., Ax ≤ 0. Then A(αx) = αAx ≤ 0 for all α ≥ 0. Hence αx ∈ S
for all α ≥ 0 and S is a cone.

4. The inequality Ax ≤ b consists of m scalar inqualities aTi x ≤ bi that all
must hold. Let x ∈ S and j ∈ {1, . . . ,m} be such that aTj x = bj and bj 6= 0
(such x always exists since A 6= 0 and since b 6= 0). Now,
aTj (αx) = αaTj x = αbj for all α ≥ 0.
If bj > 0 and α > 1, then aTj x = αbj > bj and αx 6∈ S.
If bj < 0 and α ∈ [0, 1), then aTj x = αbj > bj and αx 6∈ S.
Hence S is not a cone.
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5. Let x ∈ S, i.e., x ≥ 0. Then αx ≥ 0 for all α ≥ 0. Hence, αx ∈ S for all
α ≥ 0 and S is a cone.

6. Let (x, t) ∈ S, i.e., ‖x‖2 ≤ t. Then ‖αx‖2 = α‖x‖2 ≤ αt for all α ≥ 0. Hence
(αx, αt) ∈ S for all α ≥ 0 and S is a cone.

7. Let X ∈ S, i.e., X is symmetric and xTXx ≥ 0 holds for all x ∈ Rn.
Scaling X by α does not destroy symmetry. Also xT (αX)x = αxTXx ≥ 0
for all α ≥ 0 and all x ∈ Rn. Hence, αX ∈ S for all α ≥ 0 and S is a cone.

Solution 1.7

1. Convex. We should prove that

ιC(θx+ (1− θ)y) ≤ θιC(x) + (1− θ)ιC(y) (5.1)

for all x, y ∈ Rn and all θ ∈ [0, 1]. If x, y ∈ C, then the lefthand side and
the righthand side are 0 by convexity of C, hence (5.1) holds. If x 6∈ C or
y 6∈ C, the RHS is ∞ which means that (5.1) is satisfied.

2. Convex. By the tringle inequality and positive homogenity of norms, we
have for all θ ∈ [0, 1]:

‖θx+ (1− θ)y‖ ≤ θ‖x‖+ (1− θ)‖y‖.

3. Not convex. By the tringle inequality and positive homogenity of norms,
we have for all θ ∈ [0, 1]:

−‖θx+ (1− θ)y‖ ≥ θ(−‖x‖) + (1− θ)(−‖y‖).

Hence f(x) = −‖x‖ is only convex if we have equality for all x, y and
θ ∈ [0, 1]. Now, let y = −x 6= 0 and θ = 1

2 , which gives 0 ≥ −‖x‖. This holds
with strict inequality for all x 6= 0. Hence f is not convex. (Another way to
prove the second fact is that the convexity definition holds with equality
everywhere if and only if f is affine.)

4. Not convex. The function is twice continuously differentiable. The
gradient ∇f(x, y) = (y, x) and the Hessian

∇2f(x, y) =

[
0 1
1 0

]
.

This is not positive semidefinite (symmetric but eigenvalues -1,1). Hence
f is not convex.

5. Convex. We have

aT (θx+ (1− θ)y) + b = θ(aTx+ b) + (1− θ)(aT y + b)

and the convexity definition holds with equality.

6. Convex. The Hessian is ∇2f(x) = Q � 0, so f is convex.
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7. Convex. Let y1 and y2 be arbitrary. Let x1 ∈ C be the closest point in C
from y1 and let x2 be the closed poitn in C from y2. Further, let θ ∈ [0, 1]
and define z = θx1 + (1− θ)x2 ∈ C due to convexity of C. Then

θdistC(y1) + (1− θ)distC(y2) = θ‖y1 − x1‖+ (1− θ)‖y2 − x2‖
= ‖θ(y1 − x1)‖+ ‖(1− θ)(y2 − x2)‖
≥ ‖θy1 + (1− θ)y2 − (θx1 + (1− θ)x2)‖
= ‖θy1 + (1− θ)y2 − z‖
≥ distC(θy1 + (1− θ)y2).

Solution 1.8

1. We know that ‖x‖ is convex. Now, define

h(y) =

{
yp if y ≥ 0

0 else

Since h is an increasing function for p ≥ 1 and ‖x‖ is convex,
h(‖x‖) = ‖x‖p is convex.

2. First term: ‖z‖22 is convex and ‖Ax− b‖22 is convex since composition with
affine mapping. ‖x‖1 convex since norm. Finally, sums of convex
functions are convex.

3. All norms in the max expression are convex. The max operation
preserves convexity.

4. max(0, 1 + xi) max of convex functions, hence convex. Sum over these
convex functions is convex. Second term is increasing function of (convex)
norm, hence convex. Nonnegative sum is convex.

5. Index all y using j from the uncountable index set J to get yj . Further
define rj = g(yj). Then aj(x) = xT yj − rj are affine functions of x and
f(x) = supj(aj(x) : j ∈ J). Since f is the supremum over a family of
convex (affine) functions, it is convex.

Solution 1.9

1. It is nonempty since obviously x̄ ∈ C. Now, let x1 ∈ C and x2 ∈ C be
arbitrary. Then, g(x1) ≤ 0 and g(x2) ≤ 0. Now, by convexity of g, we have
for all θ ∈ [0, 1] that x = θx1 + (1− θ)x2 satisfies
g(x) ≤ θg(x1) + (1− θ)g(x2) ≤ 0. Hence x ∈ C, and C is convex.

2. Let g be as follows:
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g(x)

0

3. Let g be as follows:

g(x)

0

Solution 1.10

f(x) = |x| f(x) = x2

f(x) = |x|+ x2 f(x) = max(|x|, x2)

f(x) = min(|x|, x2)

Solution 1.11
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1. We have

g(θx+ (1− θ)y) = g1(θx+ (1− θ)y) + g2(θx+ (1− θ)y)

≤ θg1(x) + (1− θ)g1(y) + θg2(x) + (1− θ)g2(y)

= θ[g1(x) + g2(x)] + (1− θ)[g1(y) + g2(y)]

= θg(x) + (1− θ)g(y).

Hence g is convex.

2. We have

epig = {(x, r) : g(x) ≤ r}
= {(x, r) : max(g1(x), g2(x)) ≤ r}
= {(x, r) : g1(x) ≤ r and g2(x) ≤ r}
= {(x, r) : g1(x) ≤ r} ∩ {(x, r) : g2(x) ≤ r}
= epig1 ∩ epig2,

which is convex since g1 and g2 are convex. Hence g is a convex function.

Solution 1.12
Let x, y ∈ domf . Then, by definition of convexity, f(θx+ (1− θ)y) ≤ θf(x) + (1−
θ)f(y) < ∞ for all θ ∈ [0, 1]. That is (θx + (1 − θ)y) ∈ domf if x, y ∈ domf and
domf is convex.

Solution 1.13
The epigraph of f is

epif = {(x, r) : f(x) ≤ r} = {(x, r) : aTx+ b ≤ r}

= {(x, r) : [aT ,−1]

[
x
r

]
≤ −b}

which is a halfspace in Rn+1.

Solution 1.14
Since θ only affects the first argument of L, convexity w.r.t. the second is direct.

1. The function reads L(θx, y) where x fixed. This is convex in the first
argument w.r.t. θ since L is convex and it is a composition with an affine
(linear) mapping θ.

2. Let, e.g., σ(u) = u, L(u, y) = u, x = 1 and y ∈ R. Then
L(m(x; θ), y) = m(x; θ) = θ2θ1, which is nonconvex. Hence, this
formulation is nonconvex in general.
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Solution 1.15

1. That f(x)− σ
2 ‖x‖

2
2 is convex is equivalent to that for all x, y and θ ∈ [0, 1]

and z = θx+ (1− θ)y:

f(z)− σ
2 ‖z‖

2
2 ≤ θ(f(x)− σ

2 ‖x‖
2
2) + (1− θ)(f(y)− σ

2 ‖y‖
2
2)

which is equivalent to that

f(z) ≤ θf(x) + (1− θ)f(y) + σ
2 (‖z‖

2
2 − θ‖x‖22 − (1− θ)‖y‖22).

Now,

‖θ x+ (1− θ)y‖22 − θ‖x‖22 − (1− θ)‖y‖22
= (θ2 − θ)‖x‖22 + ((1− θ)2 − (1− θ))‖y‖22 + 2θ(1− θ)xT y

= (θ(1− θ))(−‖x‖22 − ‖y‖22 + 2xT y)

= −(θ(1− θ))(‖x− y‖22) (5.2)

which proves the result.

2. That β
2 ‖x‖

2
2 − f(x) is convex is equivalent to that for all x, y and θ ∈ [0, 1]

and z = θx+ (1− θ)y:
β
2 ‖z‖

2
2 − f(z) ≤ θ(β2 ‖x‖

2
2 − f(x)) + (1− θ)(β2 ‖y‖

2
2 − f(y))

which is equivalent to that

f(z) ≥ θf(x) + (1− θ)f(y) + β
2 (‖z‖

2
2 − θ‖x‖22 − (1− θ)‖y‖22).

Using (5.2) gives the result.

Solution 1.16

1. See the following figure. The graph a valid function must lie within the
dark shaded areas. The dashed lines are examples of valid functions f .
Note that smoothness implies differentiability. The example in the convex
case can therefore not be used in the smooth case even though it lies
within the shaded region.

1

1

Convex

1

1

Convex and Smooth

1

1

Strongly Convex and Smooth

Solution 1.17
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1. See the following figure. The graph a valid function must lie within the
shaded areas. The dashed lines is are possible functions f .

1

1

Strictly Convex
1

1

Strictly Convex and Smooth
1

1

Strongly Convex and Smooth

Solution 1.18

1. Assume on the contrary that two minimizers exist, i.e., that x 6= x∗ exists
that satisfies f(x) = f(x∗). Then, by strict convexity of f :

f(12x+ 1
2x

∗) < 1
2(f(x) + f(x∗)) = f(x∗)

which is a contradition. Hence, at most one minimizer can exist.

2. The function f(x) = 1
x with domain x > 0 is strictly convex with infimum

0. But no x exists such that f(x) = 0. See figure.

Solution 1.19
See figure below.
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1. 2.

3. 4.

5. 6.

7. 8.

1. Not full domain, hence not smooth, strictly convex since no flat regions,
not strongly convex since no quadratic lower bound.

2. Not full domain, hence not smooth, strictly convex since no flat regions,
not strongly convex since no quadratic lower bound.

3. Smooth, not strictly convex since flat regions, not strongly convex.

4. Smooth, strictly convex, strongly convex.

5. Not smooth (no quadratic upper bound at 0), not strictly convex, not
strongly convex.

6. Smooth since quadratic upper bounds everywhere, not strictly convex
since flat regions, not strongly convex.

7. Not smooth since no uniform quadratic upper bound, stricly convex (since
no flat regions, not strongly convex since no quadratic lower bound.

8. Not smooth since not uniform quadratic upper bound, strictly convex
(since no flat regions, not strongly convex since no quadratic lower bound.

Solution 1.20
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1. Consider the following function f and point x:

f

x

2. Assume first that f is convex and x, y ∈ R. By convexity of f

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y)

for all θ ∈ [0, 1]. If we divide both sides by θ and take the limit as θ ↘ 0,
we obtain

f(y) ≥ f(x) + lim
θ↘0

f(x+ θ(y − x))− f(x)

θ

= f(x) +∇f(x)T (y − x),

where the equality follows from the hint. That is, if f is convex, then (1.1)
holds.
Now, assume instead that (1.1) holds. Choose any x 6= y, and θ ∈ [0, 1],
and let z = θx+ (1− θ)y. Then

f(x) ≥ f(z) +∇f(z)T (x− z) = f(z) + (1− θ)∇f(z)T (x− y),

f(y) ≥ f(z) +∇f(z)T (y − z) = f(z)− θ∇f(z)T (x− y)

Multiplying the first inequality by θ, the second by 1− θ, and adding
them gives (since θ ∈ [0, 1])

θf(x) + (1− θ)f(y) ≥ f(z).

That is, f is convex.

Solution 1.21

1. Let f(x) := supµ µ
T (Kx− b) and let x ∈ C, i.e., Kx− b = 0. Then

f(x) = supµ µ
T 0 = 0. That is, f(x) = 0 for all x ∈ C.

If instead x 6∈ C, i.e., Kx− b 6= 0, then select µ = t(Kx− b) to get

f(x) = sup
µ

µT (Kx− b) = sup
t

t‖Kx− b‖2 → ∞

as t → ∞. That is, f(x) = ∞ for all x 6∈ C.
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2. Let f(x) := supµ≥0 µ
T g(x) and let x ∈ C, i.e., g(x) ≤ 0. Then for all µ ≥ 0,

we have µT g(x) ≤ 0. In particular, for µ = 0, we get µT g(x) = 0. Hence
f(x) = supµ µ

T g(x) = 0. That is, f(x) = 0 for all x ∈ C.
If instead x 6∈ C, i.e., g(x) > 0, then select µ = tg(x) (which is nonnegative
for all t ≥ 0) to get

f(x) = sup
µ

µT g(x) = sup
t

t‖g(x)‖2 → ∞

as t → ∞. That is, f(x) = ∞ for all x 6∈ C.

Solution 1.22
Assume on the contrary that x∗ is a local minimum, but not a global minimum,
i.e., that there exists x̄ ∈ Rn such that f(x̄) < f(x∗) but that f(x∗) ≤ f(x) for all
x such that ‖x− x∗‖ ≤ δ. Then, by convexity, for all θ ∈ (0, 1] we have

f((1− θ)x∗ + θx̄) ≤ (1− θ)f(x∗) + θf(x̄) < (1− θ)f(x∗) + θf(x∗) = f(x∗).

Now, let x = (1− θ)x∗ + θx̄ and for small enough θ ∈ (0, 1] (for instance
θ = min(1, δ

‖x∗−x̄‖ )) we have ‖x− x∗‖ = ‖(1− θ)x∗ + θx̄− x∗‖ = θ‖x∗ − x̄‖ ≤ δ but
f(x) < f(x∗), i.e., x∗ is not a local minimum and we have reached a
contradition. More specifically, we have shown that if x∗ is not a global
minimum, it is not a local minimum. Hence, if x∗ is a local minimum, it must
be a global minimum.

Solution 1.23
We have

f(
3∑

i=1

θixi) = f(θ1x1 + (1− θ1)(
3∑

i=2

θi
1−θ1

xi))

≤ θ1f(x1) + (1− θ1)f(
3∑

i=2

θi
1−θ1

xi)

= θ1f(x1) + (1− θ1)f(
θ2

1−θ1
x2 + (1− θ2

1−θ1
) θ3

(1− θ2
1−θ1

)(1−θ1)
x3))

= θ1f(x1) + (1− θ1)f(
θ2

1−θ1
x2 + (1− θ2

1−θ1
) θ3
1−θ1−θ2

x3))

≤ θ1f(x1) + θ2f(x2) + (1− θ1 − θ2)f(
θ3

1−θ1−θ2
x3)

= θ1f(x1) + θ2f(x2) + θ3f(x3)

where the convexity definition has been used in the inequalities and that θ3 =
1− θ1 − θ2 in the last equality.
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Solutions to Chapter 2

Solution 2.1

1. Function is convex and differentiable with ∇f(x) = x. Hence ∂f(x) = {x}.

2. Function is convex and differentiable with ∇f(x) = Hx+ h. Hence
∂f(x) = {Hx+ h}.

3. For x < 0, the function is −x and differentiable with gradient -1. For
x > 0, the function is x and differentiable with gradient 1. At x = 0, all
elements in [−1, 1] are subgradients (see figure).

∂f(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

(−1,−1)

(−1,−1)

(0,−1)

(1,−1)

(1,−1)

|x|
∂f

x

4. Whenever x ∈ (−1, 1), the function is 0 with gradient 0, hence ∂f(x) = 0.
When x > 1 or x < −1, x is outside the domain and ∂f(x) = ∅. When
x = 1, all s ≥ 0 are subgradients. When x = −1 all s ≥ 0 are subgradient
(see figure). Note that this subdifferential is the inverse of the
subdifferential of |x|.

∂f(x) =


[−∞, 0] if x = −1

0 if x ∈ (−1, 1)

[0,∞] if x = 1

∅ else
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(0,−1)
(1,−1)

(∞,−1)

(0,−1)
(−1,−1)

(−∞,−1)

∂f

x

5. For x < −1, the function is 0 and the gradient is 0, hence ∂f(x) = 0. For
x > −1, the function is x+ 1 and the gradient is 1, hence ∂f(x) = 1. For
x = −1, all s ∈ [0, 1] are subgradients (see figure).

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1

(0,−1)

(1,−1)

(0.5,−1)

x

f(x)
∂f

x

6. For x > 1, the function is 0 and the gradient is 0, hence ∂f(x) = 0. For
x < 1, the function is −x+ 1 and the gradient is -1, hence ∂f(x) = −1. For
x = 1, all s ∈ [−1, 0] are subgradients (see figure).

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

(0,−1)

(−1,−1)

(−0.5,−1)

x

f(x) ∂f

x

Solution 2.2
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1. See figure below.

x1: There is one affine minorizor to f at x1 with slope −3. Hence
∂f(x1) = {−3}. f is also differentiable at x1 with gradient −3. Hence
∇f(x1) = −3

x2: There is no affine minorizor to f at x2. Hence ∂f(x) = ∅. However, f
is differentiable at x2 with ∇f(x2) = 0.

x3: There are several affine minorizors to f and x3. Their slopes range
from 0 to 3. Hence ∂f(x3) = [0, 3]. However, f is not differentiable at
x3.

f(x)

x
x1

(−3,−1)

x2

x3

(0,−1)

(3,−1)

(1,−1)

2. Fermat’s rule 0 ∈ ∂f(x) holds for x3 but not for x1 and x2. Therefore, x3 is
a global minimum to the nonconvex function f .

Solution 2.3

1. Yes, since 0 ∈ ∂f(x).

2. No, since 0 6∈ ∂g(y).

3. No, since subdifferential not singleton (unique) at x.

4. No, since subdifferential not singleton (unique) at y.

5. See examples below.

Solution 2.4

• From the definition of monotonicity, we know that the minimum slope is
0 and maximum is ∞. Therefore a. and b. are monotone while c. and d.
are not.
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• We rule out c. and d. since they are not monotone. Since operators
A : R → 2R for Figures a. and b. are monotone, there exist functions f
such that A = ∂f . The subdifferential in a. is maximally monotone, hence
the subdifferential of a convex function. The subdifferential in b. is not
maximally monotone, hence not the subdifferential of a convex function.

Solution 2.5

1. Convex. The gradient ∇f(x) = σ(x). Since σ is differentiable, so is f .
Therefore, since σ = ∇f is monotone with full domain, f is convex.

2. Not convex in general for nonlinear σ. Consider, e.g., σ(x) = 2
1+e−x − 1 and

corresponding ‖σ(x)‖22 below.

x

σ(x)

x

‖σ(x)‖22

Solution 2.6

1. a. Since ∂f is maximally monotone, f is convex.
b. Since ∂f is not maximally monotone, f is not convex.

2. The optimal point x∗ satisfies 0 ∈ ∂f(x∗) (Fermat’s rule). Hence, the
minimizing x∗ are the x where the graph crosses the x-axis for both a.
and b..

3. No, since a constant offset of f is not visible in ∂f .

4. Below are example plots of f .

a. b.

It is linear to the left of the minimum and quadratic to the right.
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Solution 2.7

1. The following function (which is the absolute value |x|) is a lower bound
to f .

−y

(−1,−1) (1,−1)

y

(0, 0)

2. Since the function above is a lower bound to f , its minimum 0 is a lower
bound to the minimum of f .

3. An example of function f is given below. The function is f(x) = 1
2(x

2 + 1).

−y

(−1,−1) (1,−1)

y

(0, 0)

Solution 2.8
Since f is σ-strongly convex, g(x) := f(x)− σ

2 ‖x‖
2
2 is convex. By the

subdifferential sum rule, ∂g(x) = ∂f(x)− σx. Now, by convexity of g, we have
for all sg ∈ ∂g(x) that sg = sf − σx for some sf ∈ ∂f(x) and

f(y)− σ
2 ‖y‖

2
2 = g(y) ≥ g(x) + sTg (y − x) = f(x)− σ

2 ‖x‖
2
2 + sTg (y − x)

= f(x)− σ
2 ‖x‖

2
2 + (sf − σx)T (y − x).

Now, since ‖y‖22 − ‖x‖22 − 2xT (y − x) = ‖x− y‖22, this is equilvalent to

f(y) = f(x) + sTf (y − x) + σ
2 ‖x− y‖22.

Solution 2.9

1. We have:

‖∇g(x)−∇g(y)‖2 = ‖AT∇f(Ax+ b)−AT∇f(Ay + b)‖2
= ‖AT (∇f(Ax+ b)−∇f(Ay + b))‖2
≤ ‖A‖‖(∇f(Ax+ b)−∇f(Ay + b))‖2
≤ ‖A‖β‖Ax+ b− (Ay + b)‖2
≤ ‖A‖β‖A(x− y)‖2
≤ ‖A‖2β‖x− y‖2.

Hence g is ‖A‖2β-smooth.
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2. Set, e.g., A = 0. Then g(x) = f(b), which is constant. A constant function
is not lower bounded by a quadratic function with positive curvature.
Hence g is not necessarily convex.

Solution 2.10

(a) f not differentiable (∂f multivalued at 0), hence ∂f not Lipschitz. ∂f not
strongly monotone (minimum slope 0), hence f not strongly convex.

(b) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f
1-Lipschitz. ∂f not strongly monotone (minimum slope 0), hence f not
strongly convex.

(c) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f
1-Lipschitz. ∂f not strongly monotone (minimum slope 0), hence f not
strongly convex.

(d) f differentiable (not multivalued anywhere). Max slope 1 implies ∂f
1-Lipschitz. ∂f strongly monotone with minimum slope 1/2. Since ∂f is
also maximal, f is 1

2 -strongly convex.

Solution 2.11
Suppose that si ∈ ∂gi(xi). Then

gi(yi) ≥ gi(xi) + si(yi − xi).

Summing over i gives

g(y) ≥ g(x) +

n∑
i=1

si(yi − xi) = g(x) + sT (y − x)

and s = (s1, . . . , sn) is a subgradient of g.
Now suppose instead that s ∈ ∂g(x). Then

n∑
i=1

gi(yi) = g(y) ≥ g(x) + sT (x− y) =
n∑

i=1

(gi(xi) + si(yi − xi))

holds for all x, y. Let j ∈ {1, . . . , n} be arbitrary and set xi = yi for all i 6= j,
then this recues to

gj(yj) ≥ gj(xj) + sj(yj − xj),

i.e., sj ∈ ∂gj . Since j is arbitrary, the result follows.

Solution 2.12
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All subgradients s must satisfy

f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rn.

Since there exists y such that f(y) < ∞ and f(x) = ∞, no subgradient s exists
at x 6∈ domf .

Solution 2.13
A vector s is in the subdifferential of the indicator function at x if

ιC(y) ≥ ιC(x) + sT (y − x)

for all y. Assume x ∈ C, then ιC(y) ≥ sT (y − x) for all y, which is equilvalent to
that sT (y − x) ≤ 0 for all y ∈ C. Assume x 6∈ C but y ∈ C. Then
0 ≥ ∞+ sT (y − x) for all y. No such s exists and ιC(x) = ∅.

Solution 2.14
Fermat’s rule says x = proxγf (z) if and only if 0 ∈ ∂f(x) + γ−1(x− z).

1. We have ∂f(x) = {x}, which gives 0 = γx+ (x− z) or x = (1 + γ)−1z.

2. We have ∂f(x) = {Hx+ h}, which gives 0 = γ(Hx+ h) + (x− z) or
(I + γH)x = z − γh or x = (I + γH)−1(z − γh).

3. Let x = proxγf (z), which means 0 ∈ ∂f(x) + γ−1(x− z). The
subdifferential satisfies

∂f(x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

Let first x < 0 to have ∂f(x) = {−1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z + γ. Now x < 0 if z < −γ.
Let x > 0 to have ∂f(x) = {1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z − γ. Now x > 0 if z > γ.
Let x = 0 to have ∂f(x) = [−1, 1] Then (since x = 0)

0 ∈ ∂f(0) + γ−1(0− z)

implies that z ∈ [−γ, γ].
Hence, the prox becomes

proxγf =


z + γ if z < −γ

0 if z ∈ [−γ, γ]

z − γ if z > γ
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4. The function is the indicator function of C := [−1, 1], hence the prox
reduces to the projection onto C. If z ≤ −1, the projection is point is -1. If
z ∈ [−1, 1], the projection point is z since z ∈ C. If z ≥ 1, the projection
point is 1. Hence, the prox becomes

proxγf =


−1 if z < −1

z if z ∈ [−1, 1]

1 if z > 1

5. Let x = proxγf (z), which means 0 ∈ ∂f(x) + γ−1(x− z). The
subdifferential satisfies

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1

Let first x < −1 to have ∂f(x) = {0}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z. Now x < −1 if z < −1.
Let x > −1 to have ∂f(x) = {1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z − γ. Now x > −1 if z > γ − 1.
Let x = −1 to have ∂f(x) = [0, 1] Then (since x = −1)

0 ∈ ∂f(−1) + γ−1(−1− z)

implies that z ∈ [−1, γ − 1].
Hence, the prox becomes

proxγf =


z if z < −1

−1 if z ∈ [−1, γ − 1]

z − γ if z > γ − 1

6. Let x = proxγf (z), which means 0 ∈ ∂f(x) + γ−1(x− z). The
subdifferential satisfies

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

Let first x < 1 to have ∂f(x) = {−1}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z + γ. Now x < 1 if z < 1− γ.
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Let x > 1 to have ∂f(x) = {0}. Then

0 ∈ ∂f(x) + γ−1(x− z)

implies that x = z. Now x > 1 if z > 1.
Let x = 1 to have ∂f(x) = [−1, 0] Then (since x = 1)

0 ∈ ∂f(1) + γ−1(1− z)

implies that z ∈ [1− γ, 1].
Hence, the prox becomes

proxγf =


z + γ if z < 1− γ

1 if z ∈ [1− γ, 1]

z if z > 1

Solution 2.15
We have

proxγg(z) = argmin
x

(g(x) + 1
2γ ‖x− z‖22)

= argmin
x

(
n∑

i=1

gi(xi) +
1
2γ

n∑
i=1

‖xi − zi‖22)

= argmin
x

(

n∑
i=1

(gi(xi) +
1
2γ ‖xi − zi‖22))

=

 argminx1
(g1(x1) +

1
2γ ‖x1 − z1‖22)

...
argminxn

(gn(xn) +
1
2γ ‖xn − zn‖22)


=

proxγg1(z1)...
proxγgn(zn)

 .

Solution 2.16
We know that we need to consider n ≥ 2 since for n = 1, all monotone operators
are subdifferentials of functions. Let n = 2 and set linear single-valued
A : R2 → R2 as A(x1, x2) = (x2,−x1), which can (with notation overloading) be
represented by the matrix

A =

[
0 1
−1 0

]
.

Then A = −AT (it is skew symmetric) and

(Ax−Ay)T (x− y) = (x− y)TAT (x− y) = −(x− y)T (Ax−Ay)

= −(Ax−Ay)T (x− y).
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Hence (Ax−Ay)T (x− y) = 0 and monotonicity holds with equality.
It is not the gradient of a function since the matrix A would be the Hessian,
but it is not symmetric.
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Solutions to Chapter 3

Solution 3.1
Compute explicit expressions for the conjugates of the following convex
functions.

1. We have

f∗(s) = sup
x

(sTx− 1
2‖x‖

2
2)

Now ∇f(x) = x. Fermat’s rule says x is a solution if and only if 0 = s− x.
Hence,

f∗(s) = sT s− 1
2‖x‖

2
2 =

1
2‖s‖

2
2.

2. We have

f∗(s) = sup
x

(sTx− 1
2x

THx− hTx)

Now ∇f(x) = Hx+ h. Fermat’s rule says x is a solution if and only if
0 = s−Hx− h, i.e. x = H−1(s− h) (since H invertible). Hence,

f∗(s) = sT (H−1(s− h))− 1
2(s− h)TH−1HH−1(s− h)− hTH−1(s− h)

= 1
2(s− h)TH−1(s− h).

3. We have

f∗(s) = sup
x∈[−1,1]

sx

For s ≤ 0, an optimal x = −1 and f∗(s) = −s.
For x ≥ 0, an optimal x = 1 and f∗(s) = s.
Therefore

f∗(s) =

{
−s if s ≤ 0

s if s ≥ 0

i.e., f∗(s) = |s|.

4. Since ι[−1,1] is (closed) convex, ι∗∗[−1,1] = ι[−1,1]. In view of the above
f∗ = | · |∗ = (ι∗[−1,1])

∗ = ι∗∗[−1,1] = ι[−1,1].
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It can also be proven explicitly. We have

f∗(s) = sup
x

(sx− |x|).

For s < −1, let x = t− ≤ 0 with t− → −∞, which gives

f∗(s) = sup
x

(xs− |x|) ≥ st− − |t−| = (s+ 1)t− → ∞

since s < −1.
For s > 1, let x = t+ ≤ 0 with t+ → ∞, which gives

f∗(s) = sup
x

(xs− |x|) ≥ st+ − |t+| = (s− 1)t+ → ∞

since s > 1.
For s ∈ [−1, 1], we have by Cauchy-Schwarz that sx ≤ |x||s| ≤ |x| for all x.
Therefore f∗(s) = supx s

Tx− |x| ≤ supx |x| − |x| = 0. Further,
f∗(s) = supx sx− |x| ≥ supx s0− 0 = 0. Hence f∗(s) = 0 for all s ∈ [−1, 1].
The conjugate becomes

f∗(s) =

{
0 if s ∈ [−1, 1]

∞ else

i.e. f∗(s) = ι[−1,1](s)

5. For all s ∈ ∂f(x), the conjugate satisfies f∗(s) = sx− f(x)
(Fenchel-Young). The subdifferential is:

∂f(x) =


0 if x < −1

[0, 1] if x = −1

1 if x > −1

Let x < −1, then s = 0 and f∗(0) = 0− f(x) = 0 (since x < −1).
Let x > −1, then s = 1 and f∗(1) = x− f(x) = x− (x+ 1) = −1 (since
x > −1).
Let x = −1, then s ∈ [0, 1] and f∗(s) = −s− f(−1) = −s (since x = −1).
The other s are not subgradients to f at any x. We verify that f∗(s) = ∞.
For s < 0, let x = t− ≤ 0 with t− → −∞ and

f∗(s) ≥ st− − f(t−) = st− → ∞.

For s > 1, let x = t+ ≥ 1 with t+ → ∞ and

f∗(s) ≥ st+ − f(t+) = (s− 1)t+ + 1) → ∞.

Hence, the conjugate is

f∗(s) =

{
−s if s ∈ [0, 1]

∞ else
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6. For all s ∈ ∂f(x), the conjugate satisfies f∗(s) = sx− f(x)
(Fenchel-Young). The subdifferential is:

∂f(x) =


−1 if x < 1

[−1, 0] if x = 1

0 if x > 1

Let x < 1, then s = −1 and f∗(−1) = −x− (1− x) = −1 (since x < 1).
Let x > 1, then s = 0 and f∗(0) = 0− f(x) = 0 (since x > 1).
Let x = 1, then s ∈ [−1, 0] and f∗(s) = s− f(1) = s (since x = 1).
The other s are not subgradients to f at any x. We verify that f∗(s) = ∞.
For s− 1, let x = t− ≤ −1 with t− → −∞ and

f∗(s) ≥ st− − f(t−) = (s+ 1)t− − 1 → ∞.

For s > 0, let x = t+ ≥ 0 with t+ → ∞ and

f∗(s) ≥ st+ − f(t+) = st+ → ∞.

Hence, the conjugate is

f∗(s) =

{
s if s ∈ [−1, 0]

∞ else

Solution 3.2
We have

g∗(s) = sup
x

(xT s− g(x)) = sup
x

(

n∑
i=1

xisi − gi(xi))

=

n∑
i=1

sup
xi

(xisi − gi(xi))

=

n∑
i=1

g∗i (si).

Solution 3.3

1. The function f(x) = ‖x‖1 =
∑n

i=1 |xi|. Therefore

f∗(s) =
n∑

i=1

f∗
i (si) =

n∑
i=1

ι[−1,1](si) = ι‖·‖∞≤1(s)
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2. The function f(x) = ι[−1,1](x) =
∑n

i=1 ι[−1,1](xi). Therefore

f∗(s) =
n∑

i=1

f∗
i (si) =

n∑
i=1

|si| = ‖s‖1.

Solution 3.4

1. Conjugate f∗(s) = supx(〈s, x〉 − ‖x‖2)

(a) The conjugate satisfies f∗(s) ≥ 0 for all s since by selecting x = 0, we
get f∗(s) ≥ 〈s, 0〉 − ‖0‖2 = 0.

(b) By Cauchy-Schwarz 〈s, x〉 ≤ ‖x‖2‖s‖2, we have

f∗(s) = sup
x

(〈s, x〉 − ‖x‖2) ≤ sup
x

(‖s‖2‖x‖2 − ‖x‖2) = sup
x

((‖s‖2 − 1)‖x‖2).

Hence, if ‖s‖2 ≤ 1, f∗(s) ≤ 0, which implies that f∗(s) = 0.
(c) Set x = ts with t ≥ 0 to get

f∗(s) = sup
x

(〈s, x〉 − ‖x‖) ≥ t‖s‖22 − t‖s‖2 = t‖s‖2(‖s‖2 − 1).

Whenever ‖s‖2 > 1, we let t → ∞ to conclude that f∗(s) = ∞.
(d) To summarize

f∗(s) =

{
0 if ‖s‖2 ≤ 1

∞ else

2. The subdifferential of f satisfies

∂f(x) = Argmax
s

(sTx− f∗(s)) = Argmax
‖s‖2≤1

(sTx).

If x = 0, then the objective is 0 and all feasible points are optimal, i.e.,
∂f(0) = B(0, 1) := {s : ‖s‖2 ≤ 1}.
If instead x 6= 0, then max‖s‖2≤1(s

Tx) ≤ max‖s‖2≤1 ‖s‖2‖x‖2 = ‖x‖2. Now,
let s = x

‖x‖2 , to get max‖s‖2≤1(s
Tx) ≥ ‖x‖2.

Therefore

∂f(x) =

{
B(0, 1) if x = 0

x/‖x‖2 else

Solution 3.5

1. Since f is only defined in in four points, the conjugate is

f∗(s) = sup
x

(sx− f(x)) = max(−s− 0,−1, s+ 1, 2s)
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(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

-1
-s

s+1
2s

s

f∗(s)

2. The biconjugate f∗∗ is the convex envelope of f . See figure.

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

(-1,0)

(0,1)

(1,-1)

(2,0)
x

f(x)

Solution 3.6

1. The claim says that

f∗(s) = max
i

(si) = sup
x∈∆

sTx

Suppose that i is any index where si = maxi(si). First note that
x = ei ∈ ∆ gives sTx = si. Now let x 6= ei but x ∈ ∆. Then

sTx =

n∑
j=1

xjsj = xisi +
∑
j 6=i

sjxj ≤ xisi + si
∑
j 6=i

xj = si

n∑
j=1

xj = si.

Hence, all points x ∈ ∆\ei satisfy sTx ≤ si. Therefore
supx∈∆ sTx = maxi(si).

2. Since element-wise max is closed and convex, the conjugate is ι∆.

3. The claim says that

f∗(s) = max(0,max
i

(si)) = sup
x∈D

sTx

Suppose that i is any index where si = maxi(si) and that si ≥ 0. First
note that x = ei ∈ ∆ gives sTx = si. Now let x 6= ei but x ∈ D. Then

sTx =
n∑

j=1

xjsj = xisi +
∑
j 6=i

sjxj ≤ xisi + si
∑
j 6=i

xj = si

n∑
j=1

xj ≤ si,
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where the last step uses si ≥ 0. Hence, whenever si ≥ 0 all points
x ∈ D\ei satisfy sTx ≤ si. Therefore supx∈D sTx = maxi(si) for all s with
at least one nonnegative element si ≥ 0.
Assume now all si are negative. Then for all x ∈ D:

sTx ≤ 0 = sT 0.

Hence x = 0 is optimal and f∗(s) = 0 for s with all negative elements.
Combined, this gives f∗(s) = max(0,maxi(si)).

4. Since max(0,maxi(si)) is closed and convex. The conjugate is ιD.

Solution 3.7

1. We have
−f∗(0) = − sup

x
(0Tx− f(x)) = − sup

x
(−f(x)) = inf

x
f(x).

2. We have
∂f∗(0) = Argmax

x
(0Tx− f∗∗(x)) = Argmax(−f(x)) = Argmin f(x)

where we have used that f∗∗ = f .

Solution 3.8

1. Since we are dealing with set valued mappings it is no problem if the
inverses are set valued, i.e. we do not need to care about surjectivity and
injectivity. The axis of the graphs are simply flipped.

2. Only a. and b. are functions. The other are set-valued.

3. Only the inverses of operators a. and c. are functions. The other are
set-valued

a. b.

c. d.
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Solution 3.9
Since ∂f∗ = (∂f)−1, we can flip the figures as follows.
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x

∂f(x)

−1

1

c.

∂f∗(s)

s
1

−1

x

∂f(x)

a.

s

∂f∗(s)

x

∂f(x)

b.

s

∂f∗(s)

x

∂f(x)

−1

1

d.

∂f∗(s)

s
1

−1
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Solution 3.10
By Fermat’s rule, z = proxγf (x) if and only if

0 ∈ ∂f(z) + γ−1(z − x)

⇔ x ∈ (I + γ∂f)(z)

⇔ (I + γ∂f)−1x = z.

We have equality in the last step since we know that the prox is single-valued
for convex functions.

Solution 3.11

1. We will solve this graphically. Left plot shows I + γ∂f and the right
shows (I + γ∂f)−1 = proxγf .

proxγf (x) =


x+ γ if x ≤ −γ

0 if x ∈ [−γ, γ]

x− γ if x ≥ γ

γ

−γ

(I + γ∂f)

x
γ

−γ

(I + γ∂f)−1

x

2. We will solve this graphically. Left plot shows I + γ∂f and the right
shows (I + γ∂f)−1 = proxγf . The prox does not depend on γ (since it is
actually a projection).

proxγf (x) =


−1 if x ≤ −1

x if x ∈ [−1, 1]

1 if x ≥ 1

1

−1

(I + γ∂f)

x
1

−1

(I + γ∂f)−1

x
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3. We will solve this graphically. Left plot shows I + γ∂f and the right
shows (I + γ∂f)−1 = proxγf .

proxγf (x) =


x if x ≤ −1

−1 if x ∈ [−1, γ − 1]

x− γ if x ≥ γ − 1

γ − 1

−1

(I + γ∂f)

x
γ − 1−1

(I + γ∂f)−1

x

4. We will solve this graphically. Left plot shows I + γ∂f and the right
shows (I + γ∂f)−1 = proxγf .

proxγf (x) =


x+ γ if x ≤ 1− γ

1 if x ∈ [1− γ, 1]

x if x ≥ 1

1− γ

−γ

(I + γ∂f)

x
1− γ

−γ

(I + γ∂f)−1

x

Solution 3.12

1. Let u = z − x. That x = proxf (z) is equivalent to that

0 ∈ ∂f(x) + x− z ⇔ z − x ∈ ∂f(x)

⇔ x ∈ ∂f∗(z − x)

⇔ z − u ∈ ∂f∗(u)

⇔ 0 ∈ ∂f∗(u) + u− z

⇔ u = proxf∗(z).

Since u = z − x the result follows.
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2. We have

(γf∗)(s) = sup
x

(sTx− γf(x)) = γ sup
x

((γ−1s)Tx− f(x)) = γf∗(γ−1s).

3. We have s = prox(γf)∗(z) if and only if

s = Argmin
y

((γf)∗(y) + 1
2‖y − z‖22)

= Argmin
y

(γf∗(γ−1y) + 1
2‖y − z‖22)

= γ Argmin
v

(γf∗(v) + 1
2‖γv − z‖22)

= γ Argmin
v

(γf∗(v) + γ2

2 ‖v − γ−1z‖22)

= γ Argmin
v

(γ−1f∗(v) + 1
2‖v − (γ−1z)‖22)

= γproxγ−1f∗(γ−1z)

4. Combine first and third subproblems.

Solution 3.13
Compute the proxf∗ , i.e., the prox of the conjugate, for the following f .

1. f(x) = 1
2x

THx+ hTx with H positive definite

2. f(x) = max(0, 1 + x)

3. f(x) = max(0, 1− x)

Moreau decomposition says proxf∗(z) = z − proxf (z).

1. The prox of f satisfies proxf (z) = (I + γH)−1(z − γh) which implies that

proxf∗(z) = z − (I + γH)−1(z − γh)

2. The prox of f satisfies

proxf (z) =


z if z < −1

−1 if z ∈ [−1, γ − 1]

z − γ if z > γ − 1

which implies that

proxf∗(z) = z − proxf (z) =


0 if z < −1

z + 1 if z ∈ [−1, γ − 1]

γ if z > γ − 1
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3. The prox of f satisfies

proxγf =


z + γ if z < 1− γ

1 if z ∈ [1− γ, 1]

z if z > 1

which implies that

proxf∗(z) = z − proxf (z) =


−γ if z < 1− γ

z − 1 if z ∈ [1− γ, 1]

0 if z > 1

Solution 3.14

1. The functions are closed convex and constraint qualification holds so the
primal problem is equivalent to

0 ∈ ∂f(x) + ∂g(x) ⇔
y ∈ ∂f(x)

−y ∈ ∂g(x)
⇔

x ∈ ∂f∗(y)

x ∈ ∂g∗(−y)

since ∂f = (∂g∗)−1 for (closed) convex functions.

2. Eliminating the x gives:

x ∈ ∂f∗(y)

x ∈ ∂g∗(−y)
⇔ 0 ∈ ∂f∗(y)− ∂g∗(−y)

3. In general no. Inspired by x ∈ ∂f∗(y) you could use the subgradient
selector to generate a candidate solution x̂ = sf∗(y?). But

x ∈ ∂f∗(y?)

x ∈ ∂g∗(−y?)

need not hold for all x ∈ ∂f∗(y?) so

x̂ = sf∗(y?) ∈ ∂f∗(y?) ; x̂ ∈ ∂g∗(−y).

If f∗ is differentiable ∂f∗(y) is a singleton (unique) for all y. This means
that for every y?, x? is unique such that

x? = ∇f∗(y?)

x? ∈ ∂g∗(−y?).

In this case, the subgradient selector is the gradient and
x̂ = sf∗(y?) = ∇f∗(y?) = x? will recover the solution.

69



Solution 3.15
Fermat’s rule gives

0 ∈ LT∂f(Lx) + ∂g(x)

⇔

{
y ∈ ∂f(Lx)

−LT y ∈ ∂g(x)

⇔

{
Lx ∈ ∂f∗(y)

x ∈ ∂g∗(−LT y)

⇔ 0 ∈ f∗(y)− L∂g∗(−LT y)

⇒ 0 ∈ ∂(f∗ + g∗ ◦ −LT )(y)

which is Fermat’s rule (optimality conditions) for the dual problem

minimize
y

(f∗(y) + g∗(−LT y))

Solution 3.16
The general dual problem is

minimize f∗(µ) + g∗(−LTµ).

1. We have f∗(µ) = 1
2λ‖µ‖

2
2 (Exercise 3.1-1) and g∗(ν) =

∑n
i=1 max(0, 1− νi)

(Exercise 3.1-6 and 3.2 and using g∗∗ = g). Therefore the dual problem is

minimize 1
2λ‖µ‖

2
2 +

n∑
i=1

max(0, 1 + (LTµ)i).

Since the functions are convex and the primal and dual constraint
qualifications hold, we can recover a primal solution from the primal-dual
optimality condition Lx = ∂f∗(µ) = 1

λµ ⇒ x = 1
λL

−1µ, which holds with
equality since f∗ is differentiable, i.e., ∂f∗(µ) is a singleton.

2. We have f∗(µ) = ‖µ‖1 (Exercise 3.3) and g∗(ν) = 1
2λ‖ν + b‖22

(Exercise 3.1-2). Therefore the dual problem is

minimize ‖µ‖1 + 1
2λ‖ − Lµ+ b‖22.

Since the functions are convex and the primal and dual constraint
qualifications hold, we can recover a primal solution from the primal-dual
optimality condition x = ∂g∗(−LTµ) = 1

λ(−LTµ+ b), which holds with
equality since g∗ is differentiable, i.e., ∂g∗(−LTµ) is a singleton.

Solution 3.17

1. We have

f∗(s) = sup
z

(sT z − f(z)) ≥ sTx− f(x).
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2. We have

f∗(s0) = sup
x

(sT0 x− f(x)) ≤ sup
x

(sT0 x− (f(x0) + sT0 (x− x0)))

= sT0 x0 − f(x0).

Equality holds in view of the first subproblem.

3. We have

f∗(s0) ≤ sT0 x0 − f(x0)

⇔ sup
y

{
sT0 y − f(y)

}
≤ sT0 x0 − f(x0)

⇔ sT0 y − f(y) ≤ sT0 x0 − f(x0) for all y
⇔ f(y) ≥ f(x0) + sT0 y − x0 for all y
⇔ s0 ∈ ∂f(x0)

And we have actually shown the full equivalence.

Solution 3.18

1. Since f∗∗ ≤ f , we have

0 = f∗(s) + f(x)− sTx ≥ f∗(s) + f∗∗(x)− sTx

Fenchel Young’s inequality says that other direction holds:

0 ≤ f∗(s) + f∗∗(x)− sTx.

This implies equality 0 = f∗(s) + (f∗)∗(x)− sTx holds, which is equivalent
to x ∈ ∂f∗(s).

2. Apply previous result with f as f∗.

3. Use above results and that f∗∗ = f for convex (and closed) f .

Solution 3.19
Introduce h(y) = f(y + c). Then g(x) = h(Lx) and

g∗(s) = sup
x

(sTx− h(Lx)) = − inf
x
(h(Lx) + ls(x)),

where ls(x) = −sTx. The conjugates satisfy

h∗(µ) = sup
y

(µT y − f(y + c)) = sup
v

(µT (v − c)− f(v))

= sup
v

(µT (v)− f(v))− µT c = f∗(µ)− µT c

l∗s(ν) = sup
x

(νTx+ sTx) = sup
x

((ν + s)Tx) = ι{0}(ν + s)
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Now Fenchel strong duality (constraint qualification is satisfied since
dom ls = Rn) gives

g∗(s) = − inf
x
(h(Lx)− sTx) = min

µ
(h∗(µ) + l∗s(−LTµ))

= min
µ

(f∗(µ)− µT c : s = LTµ).
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Solutions to Chapter 4

Solution 4.1

• All are convex. f2 and f3 are norms which are convex. f4 is convex since
‖ · ‖ is convex and positive and (·)2 is increasing for positive inputs. f1 is
convex since ‖Ax− b‖22 is a composition of affine and convex which is
convex.

• – f1 is ‖ATA‖ = λmax(ATA) smooth. For smoothness is equivalent to
the gradient being Lipschitz continuous.

‖AT (Ax− b)−AT (Ay − b)‖
= ‖ATAx−ATAy‖ = ‖ATA(x− y)‖ ≤ ‖ATA‖‖x− y‖

– Both f2 and f3 are not smooth. g = L
2 ‖ · ‖

2
2 − f is not convex for any L,

i.e. g(θx+ (1− θ)y) 6≥ θg(x) + (1− θ)g(y). Take for example x = 1
L ,

y = −1
L and θ = 1

2 .
– f4 is smooth. g = L

2 ‖ · ‖
2
2 − f = L−1

2 ‖ · ‖22 which is convex for L ≥ 1.

• – f1 is λmin(ATA)-strongly convex. f(x)− µ
2‖x‖

2
2 =

1
2(Ax− b)T (Ax− b)− µ

2x
Tx = 1

2x
T (ATA− µI)x− bTAx+ bT b, which is

convex as long as ATA− µI is positive semi-definite, i.e.
λmin(ATA)− µ ≥ 0.

– Both f2 and f3 are not strongly convex. g = f − µ
2‖ · ‖

2
2 is not convex

for any µ, i.e. g(θx+ (1− θ)y) 6≥ θg(x) + (1− θ)g(y). Take for example
x = 3

µ , y = −3
µ and θ = 1

2 .

– f4 is strongly convex. g = f − µ
2‖ · ‖

2
2 =

1−µ
2 ‖ · ‖22 which is convex for

µ ≤ 1.

Solution 4.2

| · |
| · |2
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What differs between the two problems is how the error for each data point,
ei = xiθ − yi is penalized. Looking at the plot we see that the 1-norm put less
penalty on large errors, ei > 1 compared to the square 2-norm. For this reason
should problem 1 be affected less by the large outliers, meaning it should be
paired to figure a.
(From this figure we can also see why the square 2-norm does not promote spar-
sity in the error in same way the 1-norm does. The square flattens out near 0
which means that as the error becomes small there are diminishing returns for
reducing the error further. The 1-norm does not have this problem and a re-
duction of the error will always yield the same cost reduction, regardless of the
initial error. For this reason it is more likely that errors are driven to 0.)

Solution 4.3
The model becomes

ma,b(x) =
a0
2 +

N∑
n=1

an cos(2πnx) + bn sin(2πnx)

= a0
2

+ [cos(2πx), cos(2π2x), ..., cos(2πNx)]


a1
a2
...
aN



+ [sin(2πx), sin(2π2x), ..., sin(2πNx)]


b1
b2
...
bN



= [12 , cos(2πx), ..., cos(2πNx), sin(2πx), ..., sin(2πNx)]



a0
a1
...
aN
b1
...
bN


= φ(x)Tw

where w = (a0, a1, ..., aN , b1, ..., bN ) and the feature map is

φ(x) = (12 , cos(2πx), ..., cos(2πNx), sin(2πx), ..., sin(2πNx))

Solution 4.4

• Alternative 1:
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Optimality conditions are

0 ∈ AT (Ax− b) + λ

 g(x1)
...

g(xm)

 ,

where

g(xi) =


−1 if xi < 0

[−1, 1] if xi = 0

1 if xi > 0

For x = 0, the optimality condition reads

0 ∈ −AT b+ λ[−1, 1]m

which holds for all λ ≥ maxi(|(AT b)i|) = ‖AT b‖∞.

• Alternative 2:
Let f(x) = 1

2‖Ax− b‖22 + λ‖x‖1. Using Cauchy-Schwarz, we get the
following lower bound.

f(x) ≥ 1
2‖Ax− b‖22 + ‖AT b‖∞‖x‖1

≥ 1
2‖Ax− b‖22 + bTAx

= 1
2‖Ax‖22 + 1

2‖b‖
2
2

≥ 1
2‖b‖

2
2.

Furthermore f(0) = 1
2‖b‖

2
2 so the lower bound is attained at x = 0,

therefore x = 0 is optimal.

Solution 4.5
We first note that because of our class label choice we can write p1 and p−1 in
one expression as

py(x) =
1

1 + e−y(wT x+b)

and the likelihood then becomes

lw(x, y) =
∏N

i=1
pyi(xi) =

∏N

i=1

1

1 + e−yi(wT xi+b)
.

Maximizing lw(x, y) is the same as maximizing log(lw(x, y)) since the logarithm
is monotonically increasing. Furthermore, maximizing log(lw(x, y)) is the same
as minimizing − log(lw(x, y)), yielding

− log(lw(x, y)) = − log
(∏N

i=1

1

1 + e−yi(wT xi+b)

)
= log

(∏N

i=1
1 + e−yi(w

T xi+b)
)

=
∑N

i=1
log(1 + e−yi(w

T xi+b)).
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This function is convex, −yi(w
Txi + b) is affine, 1 + e(·) is convex, and log(·) is

increasing.
log(1 + ex) is 1

4 -smooth,

d2

dx2
log(1 + ex) =

1

1 + ex

(
1− 1

1 + ex

)
≤ 1

4

therefore the problem is 1
4‖A‖2-smooth, see Exercise 2.9.

We also see that d2

dx2 log(1 + ex) → 0 as x → ∞ and x → −∞. Therefore it does
not exist any positive lower bound and log(1 + ex) and the logistic regression
problem are not strongly convex.

Solution 4.6
Using the notation from Exercise 4.5 we have the following cost∑N

i=1
log(1 + e−yi(w

T xi+b))

=
∑

∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log(1 + e−(wT xi+b))

=
∑

∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log(1 + ew
T xi+b

ewT xi+b
)

=
∑

∀i:yi=−1

log(1 + ew
T xi+b) +

∑
∀i:yi=1

log(1 + ew
T xi+b)−

∑
∀i:yi=1

log(ewT xi+b)

=
∑N

i=1
log(1 + ew

T xi+b)−
∑

∀i:yi=1

log(ewT xi+b)

=
∑N

i=1
log(1 + ew

T xi+b)−
∑

∀i:yi=1

wTxi + b.

From here we can go over to the new labels, yi = 1 → ŷi = 1 and
yi = −1 → ŷi = 0.

=
∑N

i=1
log(1 + ew

T xi+b)−
∑

∀i:ŷi=1

wTxi + b

=
∑N

i=1
log(1 + ew

T xi+b)−
∑N

i=1
ŷi(w

Txi + b)

=
∑N

i=1
log(1 + ew

T xi+b)− ŷi(w
Txi + b).

Solution 4.7
We first note that all terms in the sum are positive for all finite (w, b). Let
ui = xTi w + b, and each term reduces to log(1 + eui)− yi(ui). For yi = 0,
log(1 + eui) > 0 since 1 + eui > 1. For yi = 1, log(1 + eui)− ui = log(1+eui

eui ) > 0
since 1+eui

eui > 1.
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Now, take an i with yi = 0. Let (w, b) = t(w̄, b̄), then

log(1 + ex
T
i w+b)− yi(x

T
i w + b) = log(1 + et(x

T
i w̄+b̄)) = log(1 + etex

T
i w̄+b̄)

≤ log(1 + et) → 0

as t → −∞, where ex
T
i w̄+b̄ ∈ (0, 1) (since xTi w̄ + b̄ < 0) has been used in the

inequality.
Instead, take i with yi = 1. Then

log(1 + ex
T
i w+b)− yi(x

T
i w + b) = log(1 + et(x

T
i w̄+b̄))− t(xTi w̄ + b̄)

= log(1+etex
T
i w̄+b̄

ete(x
T
i
w̄+b̄)

)

= log(1 + e−te−(xT
i w̄+b̄))

≤ log(1 + e−t) → 0

as t → ∞, where e−(xT
i w̄+b̄) ∈ (0, 1) (since xTi w̄ + b̄ > 0) has been used in the

inequality.
Hence, the infimum is 0 which is not attained by any (w, b) since the cost is
positive for all (finite) (w, b).

Solution 4.8

1. True. See the model mw(x) as a function of w instead of x,
mw(x) = fx(w) = φ(x)Tw. fx(w) is clearly linear in w since φ(x) does not
depend on w and therefore is constant. Since yi also does not depend on w
is L(mw(xi), yi) = L(fxi(w), yi) a composition between convex and linear,
which is convex. The full cost is then a sum of convex functions which is
convex.

2. False. Consider a two layer network with identity activation functions
and R → R layers, mw(x) = w1w2x. Take the square error loss and the
data x = 1 and y = 0, then L(mw(xi), yi) = ‖w1w2‖22 = (w1w2)

2 which is not
convex. The points (0, 1) and (1, 0) both have function value 0 but the
point (0.5, 0.5) on the line between them have a positive function value.

Solution 4.9
Positive semi-definiteness is

aTKa ≥ 0, ∀a.
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Inserting K and using linearity gives

aTKa =
n∑

i=1

n∑
j=1

aiKijaj

=
n∑

i=1

n∑
j=1

aik(xi, xj)aj

=
n∑

i=1

n∑
j=1

ai〈φ(xi), φ(xj)〉Faj

=

n∑
i=1

ai〈φ(xi),
n∑

j=1

ajφ(xj)〉F

= 〈
n∑

i=1

aiφ(xi),

n∑
j=1

ajφ(xj)〉F

= 〈Φ,Φ〉F
= ‖Φ‖2F ≥ 0

where Φ =
∑n

i=1 aiφ(xi)

Solution 4.10

1. Since f is a sum of hinge-losses, the conjugate f∗ is

f∗(µ) =

N∑
i=1

µi + ι[−1,0](µi) = 1Tµ+ ι[−1,0](µ),

see Exercises 3.1-6 and 3.2. The conjugate g∗ is

g∗(νw, νb) = sup
w,b

((νw, νb)
T (w, b)− λ

2‖w‖
2
2)

= sup
w

(νTww − λ
2‖w‖

2
2) + sup

b
(νbb)

= 1
2λ‖νw‖

2
2 + ι{0}(νb),

(Exercise 3.1-1). We note that

g∗(−LTµ) = g∗(−
[
X
1T

]
µ) = 1

2λ‖ −Xµ‖22 + ι{0}(−1Tµ)

The dual problem becomes

min 1Tµ+ ι[−1,0](µ) +
1
2λ‖ −Xµ‖22 + ι{0}(−1Tµ).

or written differently

minimize 1Tµ+ 1
2λµ

TXTXµ
subject to −1 ≤ µ ≤ 0

1Tµ = 0
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2. The optimal w is recovered from the following primal-dual optimality
condition

L(w, b) ∈ ∂f∗(µ)

(w, b) ∈ ∂g∗(−LTµ).

The second condition yields
(w, b) ∈ (−1

λ Xµ, {R if − 1Tµ = 0}),

i.e. w = .1
λXµ. However, since ∂g∗ is not a singleton in the last element,

we need something else to recover the optimal b.
The first condition then gives

[XT ,1](w, b) = XTw + b1 ∈ ∂f∗(µ)

and we note that

(∂f∗(µ))i =


1 if − 1 < µi < 0

[1,∞] if µi = 0

[−∞, 1] if µi = −1

.

If −1 < µi < 0 we see that we can determine b uniquely, i.e. take b such
that

xTi w + b = 1 ⇐⇒ b = 1− xTi w

where i is such that −1 < µi < 0.

Solution 4.11

max(0, 1− x)

log(1 + e−x)

• Start by simply inserting the model∑n

i=1
φ(cyi(xi)) =

∑n

i=1
l(cyi(xi))

=
∑

∀i:yi=1

l(c1(xi)) +
∑

∀i:yi=2

l(c2(xi))

=
∑

∀i:yi=1

l(m1(xi)−m2(xi)) +
∑

∀i:yi=2

l(m2(xi)−m1(xi))

=
∑

∀i:yi=1

l(wT
1 xi − wT

2 xi) +
∑

∀i:yi=2

l(wT
2 xi − wT

1 xi)

=
∑

∀i:yi=1

l(xTi (w1 − w2)) +
∑

∀i:yi=2

l(xTi (w2 − w1))
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From here we see that the loss only depends on the difference
w = w1 − w2. We can also relabel our classes as y = 1 → ŷ = 1 and
y = 2 → ŷ = −1, this gives

=
∑

∀i:ŷi=1

l(xTi w) +
∑

∀i:ŷi=−1

l(−xTi w)

=
∑n

i=1
l(ŷix

T
i w)

(5.3)

Inserting the loss finally give

=
∑n

i=1
log(1 + e−ŷix

T
i w)

• Starting from (5.3) but inserting h(x) instead of l(x) gives

=
∑n

i=1
max(0, 1− ŷix

T
i w).

• Starting from (5.3) but inserting φ(x) = 1− x instead of l(x) gives

=
∑n

i=1
1− ŷix

T
i w

= n−
(∑n

i=1
ŷixi

)T

w

This is a linear function and therefore unbounded below unless∑n
i=1 ŷixi = 0. Minimizing this loss would simply yield −∞ and no w that

attain it.

Solution 4.12

1. Using the notation from the assignment we see that

cAyi(xi) = xTi wyi − 1
K

∑K

k=1
xTi wk

= [...0, 1, 0...]



...
xTi wyi−1

xTi wyi

xTi wyi+1
...

− 1
K [1, ..., 1]

xTi w1
...

xTi wK



= eTyi



...
xTi wyi−1

xTi wyi

xTi wyi+1
...

− 1
K1T

xTi w1
...

xTi wK



= eTyi

x
T
i

. . .
xTi


w1

...
wK

− 1
K1T

x
T
i

. . .
xTi


w1

...
wK


= eTyiX

T
i w − 1

K1TXT
i w = AT

i X
T
i w
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Inserting this into the loss problem

min
w

∑n

i=1
max(0, 1− cAyi(xi)) +

γ
2‖w‖

2
2

gives the desired problem formulation.

2. Inserting the confidence for one data point in the hinge-loss yields

h(cMyi (xi)) = max(0, 1− cMyi (xi))

= max(0, 1− (xTi wyi − max
k 6=yi

xTi wk))

= max(0, 1− xTi wyi + max
k 6=yi

xTi wk)

= max(0,max
k 6=yi

1− xTi wyi + xTi wk)

= max
k

{
0 if k = yi

1− xTi wyi + xTi wk otherwise

= max



...
1
0
1
...

−



...
xTi wyi

xTi wyi

xTi wyi
...

+



...
xTi wyi−1

xTi wyi

xTi wyi+1
...



= max dyi −



...
1
1
1
...


[
. . . 0 1 0 . . .

]


...
xTi wyi−1

xTi wyi

xTi wyi+1
...

+XT
i w

= max dyi − 1eTyiX
T
i w +XT

i w

= max dyi − (1eTyi − I)XT
i w

= max dyi −MT
i X

T
i w.

Sum over all data points (i) and adding the regularization gives the
desired problem.

Solution 4.13

1. Exercise 3.1-6 implies that

f∗
i (µi) = µi + ι[−1,0](µi)

Further

f∗(µ) =
N∑
i=1

f∗
i (µi) =

n∑
i=1

µi + ι[−1,0](µi) = 1Tµ+ ι[−1,0](µ).

We also have g∗(ν) = 1
2γ ‖ν‖

2
2. Hence

g∗(−XAµ) = 1
2γµ

TATXTXAµ.
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Hence, the dual problem is

minimize µT1 + 1
2γµ

TATXTXAµ

subject to µ ∈ [−1, 0]

2. Since g∗ is differentiable, we can recover a primal solution from the
primal-dual optimality condition

w = ∂g∗(−XAµ) = −1
γ XAµ.

Solution 4.14

1. Exercise 3.6 implies that maxi(ui)
∗ = ι∆K

(µi) where

∆K = {x ∈ RK : xi ≥ 0 and
∑K

i=1
xi = 1}

Therefore

f∗
i (µi) = sup

ui

(µT
i ui − max(dyi − ui))

= [vi = dyi − ui]

= sup
vi

(µT
i (dyi − vi)− max(vi))

= sup
vi

((−µi)
T vi − max(vi)) + µT

i dyi

= ι∆K
(−µi) + µT

i dyi .

Further

f∗(µ) =
∑n

i=1
f∗
i (µi) =

∑n

i=1
ι∆K

(−µi) + µT
i dyi .

where µ = (µ1, ..., µn) ∈ RKn.
We also have g∗(ν) = 1

2γ ‖ν‖
2
2. Hence

g∗(−XMµ) = 1
2γµ

TMTXTXMµ.

Hence, the dual problem is

minimize µTd + 1
2γµ

TMTXTXMµ

subject to −µi ∈ ∆K

where d = (dy1 , dy2 , ..., dyn) ∈ RKn

2. Since g∗ is differentiable, we can recover a primal solution from the
primal-dual optimality condition

w = ∂g∗(−XMµ) = −1
γ XMµ.
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Solutions to Chapter 5

Solution 5.1
That x? is a fixed point means tha t

x? = x? − λ∇f(x?)

⇐⇒ 0 = −λ∇f(x?)

⇐⇒ 0 = ∇f(x?)

Convexity then gives that x? minimizes f .

Solution 5.2
That z = proxγf (x) means

z = argmin
y

(f(y) + 1
2γ ‖y − x‖22).

By Fermat’s rule, the argmin z satisfies

0 ∈ ∂f(z) + γ−1(z − x).

If x = z = proxγf (x), then this reduces to 0 ∈ ∂f(x), and x minimizes f .

Solution 5.3
x = proxγg(x− γ∇f(x)) written out is

x = argmin
z

g(z) + 1
2γ ‖z − (x− γ∇f(x))‖2

which due to convexity is equivalent to

0 ∈ ∂g(x) + 1
γ (x− (x− γ∇f(x)))

= ∂g(x) +∇f(x).

Fermat’s rule and convexity then gives that x is a minimum of f + g.

Solution 5.4

1. Any unbounded function, for instance f(x) = x. f(xk) can go to minus
infinity.
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2. First, since f(x) ≥ B there exists a largest lower bound on f(xk), i.e.
inf f(xk) = b ≥ B (This comes from completeness of the real numbers).

Second, f(xk) → b means that for all ε there exist some N ∈ N such that
|f(xk)− b| ≤ ε for all k ≥ N . The inequality can equivalently be written as

b− ε ≤ f(xk) ≤ b+ ε.

The left inequality hold by definition of b = inf f(xk). Furthermore, there
exists an N such that f(xN ) ≤ b+ ε, otherwise b+ ε is a larger lower
bound than b which is a contradiction. Since f(xk) ≤ f(xN ) for k ≤ N the
right inequality, f(xk) ≤ b+ ε, hold for all k > N and f(xk) → b have been
established.

3. The most basic example would be any constant sequence xk = x where x
is not the minimum. A slightly more interesting example would be
f(x, y) = x2 + y2 and the sequence xk = sin(k) + 1

k and yk = cos(k) for
which f(xk, yk) = 1 + 1

k2
is decreasing but does not converge to the

optimum f(0, 0) = 0. There are plenty more examples. Function value
decrease is a very weak (useless) condition for a minimization algorithm.

Solution 5.5

1. Using L-smoothness gives

f(xk+1) = f(xk − γ∇f(xk))

≤ f(xk) +∇f(xk)T (xk − γ∇f(xk)− xk) + L
2 ‖x

k − γ∇f(xk)− xk‖2

= f(xk)− γ‖∇f(xk)‖2 + L
2 γ

2‖∇f(xk)‖2

= f(xk)− γ(1− L
2 γ)‖∇f(xk)‖2

2. Re-arranging the above inequality gives

γ(1− L
2 γ)‖∇f(xk)‖2 ≤ f(xk)− f(xk+1).

Summing this inequality from k = 0 to k = n gives∑n

k=0
γ(1− L

2 γ)‖∇f(xk)‖2 ≤
∑n

k=0
f(xk)− f(xk+1)

= f(x0)− f(xk+1)

≤ f(x0)−B

This inequality hold for all n and the RHS is bounded which gives

γ(1− L
2 γ)

∑∞

k=0
‖∇f(xk)‖2 < ∞

Since 0 < γ < 2
L is γ(1− L

2 γ) positive and then must ‖∇f(xk)‖2 be
summable and

‖∇f(xk)‖ → 0
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3. Strong convexity means that

f(x) ≥ f(x?) + µ
2‖x− x?‖2

f(x?) ≥ f(x) +∇f(x)T (x? − x) + µ
2‖x− x?‖2.

Adding these two together yields

∇f(x)T (x− x?) ≥ µ‖x− x?‖2.

Using Cauchy-Schwarz on the LHS yields

‖∇f(x)‖‖x− y‖ ≥ µ‖x− x?‖2 =⇒ ‖∇f(x)‖ ≥ µ‖x− x?‖.

Therefore, if ‖∇f(xk)‖ → 0 then ‖x− x?‖ → 0.

4. The function f(x, y) = x2

y for y > 0 is convex,

∇2f(x, y) = 2
y3

[
y
−x

]
[y − x] > 0,

and has the minimum f(0, y) = 0. The sequence (xk, yk) = (k + 1
k , k

2)
satisfy ∇f(xk, yk) → 0,

∇f(xk, yk) =

[
2xk

yk

−(xk)2

(yk)2

]
=

 2(k+
1
k )

k2

−(k+
1
k )

2

k4

 =

[
2( 1k + 1

k3
)

( 1k + 1
k3
)2

]
→

[
0
0

]
,

and f(xk+1, yk+1) ≤ f(xk, yk),

f(xk+1, yk+1) = x2

y =
(k+1+

1
k+1)

2

(k+1)2
= (1 + 1

(k+1)2
)2

≤ (1 + 1
k2
)2 =

(k+
1
k )

2

k2
= f(xk, yk).

However, from f(xk, yk) = (1 + 1
k2
)2 we see that f(xk, yk) → 1.

Solution 5.6

1. Let x+ = proxγf (x) = argminz(f(z) +
1
2γ ‖x− z‖22). Therefore, for all z, it

holds that

f(x+) + 1
2γ ‖x

+ − x‖22 ≤ f(z) + 1
2γ ‖z − x‖22.

Set in particular z = x to get

f(x+) + 1
2γ ‖x+ − x‖22 ≤ f(x).

2. We have
1
2γ ‖x

k+1 − xk‖22 ≤ f(xk)− f(xk+1).

Summing this inequality gives for all n ∈ N:

1
2γ

n∑
k=0

‖xk+1 − xk‖22 ≤ f(x0)− f(xn+1) ≤ f(x0)−B.

Letting n → ∞ means that 1
2γ

∑∞
k=0 ‖xk+1 − xk‖22 < ∞ and

‖xk+1 − xk‖ → 0 as k → ∞.

85



3. From convexity of f and Fermat’s rule we have that
x+ = proxγf (x) = argminz(f(z) +

1
2γ ‖x− z‖22) is equivalent to

0 ∈ ∂f(x+) + 1
γ (x

+ − x) ⇐⇒ 1
γ (x− x+) ∈ ∂f(x+).

This means that 1
γ (x

k−1 − xk) = sk is a subgradient, sk ∈ ∂f(xk). Then

0 ≤ dist∂f(xk)(0) ≤ ‖sk − 0‖ = 1
γ ‖x

k−1 − xk‖ → 0

4. Strong convexity means that

f(y) ≥ f(x) + sT (y − x) + µ
2‖y − x‖2

for all x, y and all s ∈ ∂f(x). In particular we can take xk with
1
γ (x

k−1 − xk) = sk ∈ ∂f(xk) and x? with 0 ∈ ∂f(x?).

f(xk) ≥ f(x?) + µ
2‖x

k − x?‖2

f(x?) ≥ f(xk) + (sk)T (x? − xk) + µ
2‖x

? − xk‖2.

Adding these two together and using Cauchy-Schwarz yields

‖ 1
γ (x

k−1 − xk)‖ = ‖sk‖ ≥ µ‖xk − x?‖

which implies xk → x?.

Solution 5.7
The proximal gradient update is

x+ = argmin
z

g(z) + 1
2γ ‖z − (x− γ∇f(x))‖2

Due to convexity is this equivalent to

0 ∈ ∂g(x+) +∇f(x) + 1
γ (x

+ − x) ⇐⇒ −(∇f(x) + 1
γ (x

+ − x)) ∈ ∂g(x+).

From the definition of subdifferential we have

g(x) ≥ g(x+)− (∇f(x) + 1
γ (x

+ − x))T (x− x+)

⇐⇒ g(x+) ≤ g(x)− (∇f(x) + 1
γ (x

+ − x))T (x+ − x)

= g(x)−∇f(x)T (x+ − x)− 1
γ ‖x

+ − x‖2

L-smoothness of f yields

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + L
2 ‖x

+ − x‖2.

Adding them together yields

f(x+) + g(x+) ≤ f(x) + g(x)− ( 1γ − L
2 )‖x

+ − x‖2.

Here we see that we get descent for γ < 2
L .

Solution 5.8
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1. The function is smooth so gradient and coordinate-gradient descent
works. No need to use prox.

2. First two parts are smooth, third is not smooth but separable and easy to
prox on, (coordinate) proximal gradient works but (coordiante)
gradient-descent doesn’t. Last part is separable so coordinate proximal
gradient is efficient.

3. Both functions are smooth, second is separable and easy to prox on.
(Coordinate) Gradient descent and (Coordinate) proximal gradient all
work.

4. First function is smooth, second is easy to prox on but not separable nor
smooth. Proximal gradient all is the only alternative.

5. Neither of the functions are differentiable, so none of the methods work.

6. The first term is differentible, but not smooth (it grows too quick for large
x), and the second is proximable but not differentiable. So none of the
method works.

7. First term is smooth, second is proximable and seperable. (Coordinate)
proximal gradient works.

8. The second term is neither smooth nor simple to prox on, nether of the
methods would be efficient.

9. From Excercise 4.5 we know that the first part is smooth, and the second
part is trivially smooth, separable and easy to prox on. (Coordinate)
Gradient descent and (coordinate) proximal gradient therefore works.
However, the coordinate-wise algorithms will not be efficient, as shown in
Excercise 5.10.

Solution 5.9

1. ‖Ax− b‖22 is not strongly convex unless ATA is invertible. Since A ∈ Rm×n

with m < n, ATA has at most rank m and is therefore not invertible, and
the primal is not stronly convex. The dual will therefore not be smooth, so
there is no step length γ that can be selected that guarantees
convergence. Thus neither of the methods work.

2. 1
2x

TQx+ bTx is strongly convex so its dual is smooth. The dual of the last
part is separable and easy to prox on but not smooth. (Coordinate)
proximal gradient works.

3. First function is not strongly convex so dual of this part is not smooth and
not proximable. However, if we let f(x) = 1

2‖x− b‖22 and g(x) = ‖x‖22, the
the problem is minx f(Ax) + g(x) and the dual can be written
minµ f

∗(µ) + g∗(Ax). f∗(µ) is separable, smooth and proximable and
g∗(Ax) is smooth. Hence, any of the methods work.
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4. First function is not strongly convex so dual is not smooth and it is not
easy to prox on. Doing the same trick as for the previous problem doesn’t
work since ‖Ax‖2 is not smooth. Hence none of the methods works well.

5. Neither is strongly convex so neither of the duals are smooth. None of the
methods works.

6. Neither is strongly convex (e‖x‖4 ≈ ‖x4‖+ 1 for small x) so neither of the
duals are smooth. None of the methods works.

7. First term is strongly convex so dual is smooth, second is proximable and
separable so the same is true for the dual. (Coordinate) proximal
gradient works.

8. With f(x) = ι[−1,1](x), g(x) =
1
2x

TQx, the primal problem can written as
minx f(Lx) + g(x) so the dual is minµ f

∗(µ) + g∗(−Lµ), where
g∗(µ) = 1

2x
TQ−1x, i.e g∗(−Lµ) = 1

2x
TLTQ−1Lx which is smooth. f∗ is

seperable and proximable so (conjugate) proximal gradient works.

9. Neither of the functions are strongly convex so the neither of the duals
will be smooth. Hence, none of the algorithms work.

Solution 5.10

• All methods were applicable. The gradients of the primal functions are
Qx+ b and x. With g(x) = ‖x‖22 we have (proxγg(z))i = zi/(1 + γ).

– One iteration of gradient descent therefore requires vector
operations (O(n)) as well as one matrix multiplications (O(n2)).
Gradient descent therefore has complexity O(n2) per iteration.

– The gradient can be computed for each coordinate using only
multiplication of one row in Q with x (O(n)). Per iteration
complexity of coordinate gradient descent is therefore O(n).

– The prox on g is separable, and the complexity for each coordinate is
O(1), so the complexity of the full prox is O(n). The complexity of
proximal gradient is therefore O(n2) and for coordinate proximal
gradient it is O(n).

• The following solution assumes a straight-forward implementation of the
algorithms. It is possible to do some tricks to reduce the complexity of the
coordiante-wise implementations, see Excercise 5.11. The gradient of the
first term f(x) = log(1 + e−wT x) is ∇f(x) = −w e−wT x

1+e−wT x
and for the second

term g(x) = 1
2

∑
imax(0, xi)

2 we get (∇g(x))i = max(0, xi), with the prox
(proxγg(x))i = max(0, xi/(1 + γ)).

– Both gradient descent and proximal gradient will therefore have
vector operations as the most costly operations, and the complexity
is O(n).
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– The coordinates of the gradient to f is given by
(∇f(x))i = −wi

e−wT x

1+e−wT x
. The main cost here is the scalar product

wTx which is O(n). The coordinate-wise versions of the algorithms
will therefore have a per iteration complexity of O(n), which is the
same as the full (proximal) gradient method. Iteration over all
coordinates will therefore have a cost of O(n2) which means that the
coordinate-wise methods are not competitive compared to the full
algorithms.

Solution 5.11
At each iteration the algorithms update only one coordinate, i.e xk+1 = xk + δjk
where δjk is zero for all indices except jk. Assume that ck−1 := wTxk−1 is
already computed at iteration k. We can then calculate
ck := wTxk = wT (xk−1 + δjk−1

) = wTxk−1 + wjk−1
δjk−1

= ck−1 + wjk−1
δjk−1

using
only scalar operations. The gradient of the term f(x) = log(1 + e−wT x) at some
index i can therefore be computed as

(∇f(xk))i = −wi
e−wT xk

1 + e−wT xk = −wi
e−ck

1 + e−ck

using only scalar operations. Since g(x) =
∑

i gi(xi) = max(0, xi)2 is separable,
so is the prox, i.e

(proxγg(z))i = proxγgi(zi)

hence

xk+1
i = (proxγg(x

k − γ∇f(xk)))i = proxγgi((x
k − γ∇f(xk)))i) =

proxγgi(x
k
i − γ(∇f(xk))i) = max(0, (xki − γ(∇f(xk))i)/(1 + γ)).

This means that if we start by computing wTx0, we are then able to do each of
the following coordinate-wise updates using only scalar operations.

Solution 5.12

1. We have

xk+1 = xk − γ∇f(xk) = xk − γQxk − γq = (I − γQ)xk − γq.

If x∗ is a solution, then 0 = ∇f(x∗) i.e.

x∗ = x∗ − γ∇f(x∗) = x∗ − γQx∗ − γq = (I − γQ)x∗ − γq

so
xk+1 − x∗ = (I − γQ)xk − (I − γQ)x∗ = (I − γQ)(xk − x∗)

we therefore get ‖xk+1 − x∗‖ = ‖(I − γQ)(xk − x∗)‖ ≤ ‖I − γQ‖‖xk − x∗‖
Let λ(M) be the set of eigenvalues for a matrix M . Then
0 < λ(Q) ≤ λmax(Q), and since L = λmax(Q) we get
γ ∈ (0, 2/L) = (0, 2/λmax(Q)), which means that λ(γQ) ∈ (0, 2), and lastly
λ(I − γQ) ∈ (−1, 1). Hence, 0 ≤ ‖I − γQ‖ < 1
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2. With γ = 1/L we get λ(γQ) ∈ (0, 1) and λ(I − γQ) ∈ (0, 1). The eigenvalue
of I − γQ with the largest absolute value therefore corresponds to the
smallest eigenvalue of γQ, i.e. λmin(Q)/L, where L = λmax(Q). The
convergence rate therefore becomes r = 1− λmin(Q)/λmax(Q), where
λmin(Q)/λmax(Q) is known as the condition number.

3. The eigenvalues are 1 and ε. L = 1, so the eigenvalues of I − γQ are 0 and
1− ε with the rate set by r = 1− ε. When q = 0 then x∗ = 0. If we let
x0 = [1 0]T then xk = [(1− ε)k 0]T and the rate is achieved.

4. Let V =

[
1/
√
ε 0

0 1

]
, we then get V TQV =

[
1 0.01

0.01 1

]
which has

eigenvalues 0.99 and 1.01. The convergence will therefore be very fast.
With γ = 1/L = 1/1.01 we get r ≈ 0.02.

5. The prox if often computed on some function g(x) that is separable. With
a change of variables to x = V y, we need to prox on the function g(V y)
which is no longer separable, and computing the prox on this term
generally becomes computationally expensive.

Solution 5.13
We have

‖xk − x?‖ = ‖Txk−1 − x?‖ = ‖Txk−1 − Tx?‖ ≤ L‖xk−1 − x?‖.

Iterating this inequality back to k = 0 yields

‖xk − x?‖ ≤ Lk‖x0 − x?‖.

Since 0 < L < 1 the RHS goes to zero as k → ∞, meaning ‖xk − x?‖ → 0 as
k → ∞.

Solution 5.14

• We have

f(x) =
1

2
(Ax− b)T (Ax− b) =

1

2
xTATAx− bTAx+

1

2
bT b

so

fi,x(α) =
1

2
(x+ αei)

TATA(x+ αei)− bTA(x+ αei) +
1

2
bT b (5.4)

=
1

2
α2eTi A

TAei − αbTAxei + . . . (5.5)

where the rest does not depend on α. We therefore get

∇fi,x(α) = αeTi A
TAei − bTAxei

and
∇2fi,x(α) = eTi A

TAei = (ATA)i,i

where Li = (ATA)i,i is the i:th diagonal element of ATA.
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• The Lipschitz constant of f is ‖ATA‖2 and

‖ATA‖2 = sup
x

‖ATAx‖2
‖x‖2

≥ ‖ATAei‖2
‖ei‖2

= ‖ATAei‖2

=
(∑

j

(ATA)2j,i

) 1
2 ≥

(
(ATA)2i,i

) 1
2 = (ATA)i,i.

Solution 5.15
The proximal update of the i:th coordinate is equivalent to

x+i = argmin
z

gi(z) +
1
2γ ‖z − (xi − γ∇if(x))‖2

Due to convexity is this equivalent to

0 ∈ ∂gi(x
+
i ) +∇if(x) +

1
γ (x

+
i − xi) ⇐⇒ −(∇if(x) +

1
γ (x

+
i − xi)) ∈ ∂gi(x

+).

From the definition of a subgradient we get

gi(x
+
i ) ≤ gi(xi)−∇if(x)

T (x+i − xi) +
1
γ ‖x

+
i − xi‖2.

Since x+ and x only differ in the i:th coordinate we have that gj(x+j ) = gj(xj)
for all j 6= i. This yields

G(x+) ≤ G(x)−∇if(x)
T (x+i − xi) +

1
γ ‖x

+
i − xi‖2.

where G(x) =
∑n

i=1 gi(xi). Furthermore, ‖x+i − xi‖2 = ‖x+ − x‖2 and
∇if(x)

T (x+i − xi) = ∇f(x)T (x+ − x) which yields

G(x+) ≤ G(x)−∇f(x)T (x+ − x) + 1
γ ‖x

+ − x‖2.

Using L-smoothness of f yields

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + L
2 ‖x

+ − x‖2.

Adding these together yields

f(x+) +G(x+) ≤ f(x) +G(x)− ( 1γ − L
2 )‖x

+ − x‖2.

which proves descent if γ < 2
L .

Solution 5.16
The exact same reasoning as Exercise 5.15 yields

G(x+) ≤ G(x)−∇f(x)T (x+ − x) + 1
γi
‖x+ − x‖2.

The smoothness condition

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + 1
2(x

+ − x)TM(x+ − x)

= f(x) +∇f(x)T (x+ − x) + Mii
2 |x+i − xi|2

= f(x) +∇f(x)T (x+ − x) + Mii
2 ‖x+ − x‖2
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where Mii is the i:th diagonal element of M and the equalities hold since x+

and x only differ in one coordinate. Adding the two inequalties together yields
f(x+) +G(x+) ≤ f(x) +G(x)− ( 1

γi
− Mii

2 )‖x+ − x‖2.

and γi <
2

Mii
yields descent.

Solution 5.17
For implementations, see appendix. The function values are show in
Figure 5.1.
We see that coordinate descent and gradient descent converge at approximately
the same speed for the same amount of computations. However, by selecting a
step length for each coordinate according to the individual smoothness constants
as γi = 1/(ATA)i,i, we get considerably faster convergence.

0 100 200 300
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100 

||A
x-
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p^
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GD
CD
CD Diagonal

Figure 5.1: Function value for each iteration over full data with Gradient De-
scent, Coordinate Descent and Coordinate Descent with Diagonal scaling.

Solution 5.18
1. L-smoothness gives

f(xk+1) = f(xk − γ∇fi(x
k))

≤ f(xk) +∇F (xk)T (xk − γ∇fi(x
k)− xk) + L

2 ‖x
k − γ∇fi(x

k)− xk‖2

≤ f(xk)− γ∇F (xk)T∇fi(x
k) + L

2 γ
2‖∇fi(x

k)‖2.
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Taking expectation conditioned on xk over both sides and using linearity
yield

E[f(xk+1)|xk] ≤ f(xk)− γ∇F (xk)TE[∇fi(x
k)|xk] + L

2 γ
2E[‖∇fi(x

k)‖2|xk]
= f(xk)− γ∇F (xk)T∇F (xk) + L

2 γ
2E[‖∇fi(x

k)‖2|xk]
= f(xk)− γ‖∇F (xk)‖2 + L

2 γ
2E[‖∇fi(x

k)‖2|xk].

Using the hint gives

E[‖∇fi(x
k)‖2|xk] = ‖E[∇fi(x

k)|xk]‖2 + E[‖∇fi(x
k)−∇F (xk)‖2|xk]

≤ ‖∇F (xk)‖2 + σ2.

Inserting this into the first inequality gives the desired result.

2. Rearranging the first result

γk(1− L
2 γ

k)‖∇F (xk)‖2 − (γk)2Lσ
2

2 ≤ E[F (xk)− F (xk+1)|xk].

Taking total expectation yields

γk(1− L
2 γ

k)E[‖∇F (xk)‖2]− (γk)2Lσ
2

2 ≤ E[F (xk)− F (xk+1)].

Summing from k = 0 to k = n yields∑n

k=0
γk(1− L

2 γ
k)E[‖∇F (xk)‖2]− (γk)2Lσ

2

2 ≤ E[F (x0)− F (xk+1)]

≤ EF (x0)−B

since F (x) ≥ B. Letting n → ∞ gives∑∞

k=0
γk(1− L

2 γ
k)E[‖∇F (xk)‖2]− (γk)2Lσ

2

2 < ∞. (5.6)

Inserting γk gives ∑∞

k=0

1
2LE[‖∇F (xk)‖2 − σ2] < ∞.

i.e. E‖∇F (xk)‖2 − σ2 must be summable and therefore must
E‖∇F (xk)‖2 − σ2 → 0. As a result we can not ensure that the gradient
converge to 0 for a fixed step-size stochastic gradient descent. We only
converge to a noise ball of size σ.

3. Inserting γk into (5.6) yield∑∞

k=0
( 1k − L

2
1
k2
)E[‖∇F (xk)‖2]− 1

k2
Lσ2

2 < ∞.

The 1
k2

Lσ2

2 term will be summable there fore must the
( 1k − L

2
1
k2
)E‖∇F (xk)‖2 terms be summable to. For some finite C the

following then hold

C >
T∑

k=K

( 1k − L
2

1
k2
)E‖∇F (xk)‖2 ≥ [min

k≤T
E‖∇F (xk)‖2]

T∑
k=K

( 1k − L
2

1
k2
)

for all T ≥ K where K is such that 1
k − L

2
1
k2

> 0 for all k ≥ K. This give

0 ≤ min
k≤T

E‖∇F (xk)‖2 ≤ C∑T
k=K( 1k − L

2
1
k2
)
→ 0 as T → ∞

since 1
k not is summable.
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4. Inserting γk into (5.6) yield∑∞

k=0
( 1
k2

− L
2

1
k4
)E[‖∇F (xk)‖2]− 1

k4
Lσ2

2 < ∞.

Once again is 1
k4

Lσ2

2 summable, forcing ( 1
k2

− L
2

1
k4
)E[‖∇F (xk)‖2] to be

summable to. But ( 1
k2

− L
2

1
k4

is here also summable, making it possible for
E[‖∇F (xk)‖2 → c2 > 0 without destroying summability. Clearly, having to
fast decaying step-size could also hinder the convergence of the gradient.

Solution 5.19
For implementations, see appendix. The function values are show in
Figure 5.2.

• We see that a larger step size will result in a quicker initial decrease of
the function value. However, the error doesn’t converge towards 0, and
with a larger step-size the iterates will stay further away from the
optimal point.

• The error keeps decreasing with this approach and we seem to get the
benefit of both a large step size when we are far away, and a smaller step
size when we are close to the solution. However, the convergence rate is
still very slow compared to gradient descent.

• The error quickly converges (to something greater than 0) and the
variance goes to 0. This is because the sequence 1/k2 is summable, i.e.∑

k ‖xk+1 − xk‖ < c is bounded by some constant c, so the step lengths are
not long enough to allow the iterates to go to the optimal point.
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Figure 5.2: Stochastic gradient for different step lengths from Excercise 5.2,
where g = λmax.
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Julia Code
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Implementation of Excercise 5.17

function grad_descent(A, b, x0, γ, kmax, xsol)

x = copy(x0)

res = zeros(kmax)

err = zeros(kmax)

AtA = A'A

Atb = A'b

for i = 1:kmax

x = x .- γ.*(AtA*x .- Atb)

res[i] = norm(A*x-b)^2

end

return x, res

end

coord_descent(A, b, x0, γ::Number, kmax, xsol) =

coord_descent_efficient(A, b, x0, fill(γ, size(A,2)), kmax, xsol)

"""

stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)

γs[i] should be γ a for index i

"""

function coord_descent(A, b, x0, γs::AbstractArray, kmax, xsol)

n = size(A,2)

x = copy(x0)

res = zeros(kmax)

err = zeros(kmax)

# Store A*Aᵀ to avoid recomputing

AAt = A'A

Atb = A'b

for i = 1:(kmax*n)

# Random index

j = rand(1:n)

∇j = view(AAt,:,j)'x - Atb[j]

x[j] = x[j] - γs[j]*∇j

if i%n == 0 # Every n iterations, compute error

res[i÷n] = norm(A*x-b)^2

end

end

return x, res

end
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Implementation of Excercise 5.19

stochastic_gradient(A, b, x0, γ::Number, kmax, xsol) =

stochastic_gradient(A, b, x0, fill(γ, kmax*size(A,1)), kmax, xsol)

"""

stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)

γs[i] should be γ at batch i

"""

function stochastic_gradient(A, b, x0, γs::AbstractArray, kmax, xsol)

n = size(A,1)

x = copy(x0)

# Only store every n iterations

res = zeros(kmax)

err = zeros(kmax)

# Store Aᵀ since extracting rows is cheaper than columns

At = copy(A')

for i = 1:(kmax*n)

j = rand(1:n) # Random index

Atj = view(At,:,j) # For efficency, use views instead of direct index

x .= x .- γs[(i-1)÷n+1].*Atj.*(Atj'*x - b[j])

if i%n == 0 # Every n iterations, compute error

res[i÷n] = norm(A*x-b)^2

end

end

return x, res

end
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