
Slide title
70 pt

CAPITALS

Slide subtitle

Cloud Native
#1 - This thing called cloud

Lars Larsson

Master of all things cloud.

Johan Eker

— Good understanding of the principles behind cloud services, e.g. virtual resource, storage, etc.
— Ability to manage infrastructure-as-a-service (IaaS) and design and implement robust and scalable

cloud applications.
— Good understanding of the underlying theoretical challenges with distributed systems in a cloud

context, i.e. consensus, consistency, time, etc.
— Ability to design, implement and deploy data and compute intense cloud native applications on

standard cloud platforms.
— Good overview of technology trends and research topics.

This Course
Learning goals

No exam. Hand-in all assignment by the time of the final presentation (session #8). No later.

— Hands-on will mean a lot of work (and sometimes need for support) -- Help each other!
— Slack will be our means of communication between sessions

— https://cloudnativecourse.slack.com

— You will get accounts on Ericsson Research Data Center (use them with care)
— https://xerces.ericsson.net

— Store your code at the course's GitLab service
— https://gitlab.datahub.erdc.ericsson.net

Facilities

https://gitlab.datahub.erdc.ericsson.net

— Python know-how

— Basic operating system skills

— Access to a computer where are root (or where you can install Docker)

— A lot of time...

Prerequisite

TL;DR

Prepare for everything to fail sometime (a promise)

Avoid state whenever possible (or be quick to save)

Allow for inconsistency (you have no choice)

Keep things simple (things will get complex anyway)

Pick your tools well (and stick to them)

Cache is king

ER
DC

ER DC Team

5GEM

Autonomous Vessels

Connected Drone

Smarta
Offentliga
Miljöer II

Connected Transport

This session

The not so cloud native way of doing things

Cloud is a business model

Allocate just the right amount

Buy compute power by the meter

The next utility

The illusion of infinite compute
power and storage at your fingertips

—On-demand self-service.

—Broad network access.

—Resource pooling.

—Rapid elasticity.

—Measured service

Let’s try to define cloud computing

 NIST

Slide from Paolo Faraboschi

How it all came together

Arpanet Internet WWW Web
Services Web 2.0

Cluster
Computing

Virtualization

Linux

Autonomic
Computing

Distributed
Systems

Service
oriented

architecture

Mainframes

Cloud

REST

Grid
Computing

Deployment Models (NIST)
— Private cloud. The cloud infrastructure is provisioned for exclusive use by a single organization comprising multiple

consumers (e.g., business units). It may be owned, managed, and operated by the organization, a third party, or some
combination of them, and it may exist on or off premises.

— Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific community of consumers from
organizations that have shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It

may be owned, managed, and operated by one or more of the organizations in the community, a third party, or some
combination of them, and it may exist on or off premises.

— Public cloud. The cloud infrastructure is provisioned for open use by the general public. It may be owned, managed, and
operated by a business, academic, or government organization, or some combination of them. It exists on the premises of

the cloud provider.

— Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, community,
or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data

and application portability (e.g., cloud bursting for load balancing between clouds).

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Service Models

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

IaaS
Infrastructure-as-a-Service

PaaS
Platform-as-a-Service

SaaS
Software-as-a-Service

Cost Reduction
US administration moving to cloud saves 7-28 times

Booz-Allen-Hamiliton report “The Economics of cloud computing”

BCR=Benefit-to-cost ratios

Calculated over a 13-year life cycle

Migration motives

KPMG International’s 2012 Global Cloud Provider Survey (n=179)

Difficult to dimension

— Workload varies much:
—Death of Michael Jackson: 22% of tweets, 20% of Wikipedia traffic, Google thought they are under

attack
— Obama inauguration day: 5x increase in tweets
— Over-provisioning is expensive, under-provisioning may be worse

Rent a Datacenter

Pay by use - Rent a VM!

Computing resources in the cloud

Demand

Capacity

Time

R
es

ou
rc

es

1000 machines for 1 hour ⬄ 1 machine for 1000 hours

Bigger is Better

James Hamilton, Internet Scale Service Efficiency, Large-Scale Distributed Systems
and Middleware (LADIS) Workshop Sept’08. http:/mvdirona.com

http://mvdirona.com

Total Cost of Ownership

Obstacles/Opportunities for transitioning to the cloud

Source: “A View of Cloud Computing”, Armbrust et al

1. Availability

2. Data lock-in

3. Data confidentiality/auditability

4. Data transfer bottlenecks

5. Performance unpredictability

6. Scalable storage

7. Bugs in large-scale distributed systems

8. Scaling quickly

9. Reputation fate sharing

10. Software licensing

But cloud is more than just a
cost saving business model.

It’s a new way of working and
designing applications.

The Datacenter

What's inside?
Racks

What's inside?
Networking

What's inside?

Power supplies

What's inside?
Cooling

Source: “The Datacenter as a computer”, Barroso et al

Computer Architecture

Source: “The Datacenter as a computer”, Barroso et al

Datacenter Elements

DC Networking
Firewall

Internet

ToR switches

Aggregate switches

Core

DC Networking
Out-of-band-network

Firewall

Internet

HP ILO

DC Storage
Firewall

Internet

Centralized
storage
for app data

local disks
for boot only

DC Storage
Firewall

Internet

Distributed file system
Multiple copies
Varying latency

Storage at Google

Source: “The Datacenter as a computer”, Barroso et al

DC Storage
SAN - Storage Area Network

Separation of disk
network traffic
and application
networking may
be necessary

DC Efficiency

https://www.facebook.com/PrinevilleDataCenter/app_399244020173259

https://www.facebook.com/PrinevilleDataCenter/app_399244020173259

source: Greenpeace - Clicking Clean April 2014

— Provide a virtual datacenter

— Compute/storage/network

— Often some basic services also

— The user is responsible for making the
application run correctly, i.e. fault tolerance,
timing, handling crashes, scaling, authentication,
redundancy, etc.

— Amazon Web Services, Google Compute,
Rackspace

Infrastructure-as-a-Service

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

— Cloud provides runtime/middleware
— Java VM, Python VM, JS VM
— Databases, communication, etc.

— User does not manage/control application
infrastructure (network, servers, OS, etc.)

— PaaS handles scale-out
— Customer pays SaaS provider for the service;

SaaS provider pays the cloud for the
infrastructure

— Example: Windows Azure, Google App Engine,
Examples: Google App Engine, Node.js, Map
Reduce

Platform-as-a-Service

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Google App Engine

— App Engine invokes your app's servlet classes to handle requests and prepare responses in this
environment.

— Add
— Servlet classes, (*.java)
— JavaServer Pages (*.jsp),
— Your static files and data files,
— A deployment descriptor (the web.xml file)

— Auto scale to many billion requests per day

public class GuestbookServlet extends HttpServlet {
 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {

 UserService userService = UserServiceFactory.getUserService();
 User currentUser = userService.getCurrentUser();

 if (currentUser != null) {
 resp.setContentType("text/plain");
 resp.getWriter().println("Hello, " + currentUser.getNickname());
 } else {
 resp.sendRedirect(userService.createLoginURL(req.getRequestURI()));
 }
 }
}

import webapp2

class MainPage(webapp2.RequestHandler):
 def get(self):
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.write('Hello, World!')

application = webapp2.WSGIApplication([('/', MainPage),], debug=True)

application: your-app-id
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /.*
 script: helloworld.application

Software-as-a-Service

— Cloud provides an entire application
— Often running in the browser

— Application and data hosted centrally
— No installation, zero maintenance
— No control (no need for a sysop)

— Example:
— Google Apps, Word processor, presentation, spreadsheet,

calendar, photo, CRM, Dropbox Paper

Network

Storage

Servers

Virtualization

OS

Databases

Runtime

Application

Security

Differences between SaaS and traditional models

Traditional SaaS

price one time (upfront) subscription

accessibility local machine internet

upgrades manual managed

deployment local IT managed

security local IT managed

data storage on-prem managed

vendor incentive initial sale & upgrades high-subscription rate

Amazon AWS today

Amazon Infrastructure

— 18+ Regions, connected by
private fiber

— Regions consists of 2 or more
availability zones (AZ)

— 54+ Az
— AZ < 2 ms apart and usually

<1ms
— AZ is one or more DCs
— DC consists of 50-80.000

machines
— Inter AZ DCs < 1/4 ms apart

source: Jame Hamilton, ReInvent 20XX

—EC2 (Elastic Compute Cloud)

—Linux or Windows VM

—Several types:

—On-demand instances

—Reserved Instances - long term, low price

—Spot Instances” - you bid on a VM

—Dedicates Instances - single tenant HW

AWS Compute

4.3 hours downtime/year

AWS Storage

Dropbox price: 1TB $9.99/month
Dropbox used one AWS S3 bucket for all its customers!

OpenStack

— Open source cloud management project

— Launched in 2010 by Rackspace and NASA with initial contributions

— Open source under Apache license

— A number of distributions

— IaaS - Infrastructure-as-a-Service

— Tenants/projects & users

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

Core Services

Dashboard: “Horizon”

https://xerces.ericsson.net

https://xerces.ericsson.net

Compute: “Nova”

• Manage and automate pools of computer resources
• Life cycle of VM instances

• Keeps track of resources (virtual & real)

• Nova does not provide any virtualization capabilities,
• Uses libvirt API to interact with supported hypervisors.

• Hypervisor agnostic (Xen, KVM, VMware, Hyper-V, etc.)

• Decides where to allocate instances (Nova-Schedule)

DEMO

DEMO

DEMO

AVAILABILITY ZONEs

Specify AZ on VM creation

Object Store: “Swift”

• Swift is a highly available, distributed, eventually consistent object/blob store

• <key> & <object>

• Unstructured data store. Swift simply stores bits. (not a database, not block-device)

• Swift stores blobs of data.

• Organised in containers

• Swift provides a REST API over HTTP

• A swift storage URL looks like

• swift.example.com/v1/account/container/object

http://swift.example.com/v1/account/container/object

Block Storage:
“Cinder”

Persistent block storage for VMs

NB: There is nothing persistent with your regular VMs…

Volumes (virtual raw block devices)

Be mounted inside a VM:

— Will show up as /dev/hhx

— Treat like a regular drive; mount, partition, format

Networking: “Neutron”

—Networking as a service

—Manages IP addresses, (static/dynamic/floating)

—Users can create their own networks, control traffic, and connect servers and devices

—Configure firewalls

will reboot and update automatically… (for good and bad)

Catalog of VM boot images

Easy to upload your own favourite OS

Save a running VM and use it as an image

Import & export

Note: do not use qcow

Image Store: “Glance”

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

Send credentials Receive token

Start VM

Find HW nodeFind image

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

Load image
Create a copy
on write
filesystem and
boot

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

mountCreate volume

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

cloud-init

Retrieve meta data
Get the SSH keys
Getting your boot

curl http://169.254.169.254/openstack/latest/
meta_data.json
user_data
password
vendor_data.json

Meta data
server

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

Dashboard
“Horizon”

Dashboard
“Horizon”

Object
Store
“Swift”

Image
Store
“Glance”

Compute
“Nova”

Block
Storage
“Cinder”

Networking
“Neutron”

Authentication
“Keystone”

DEMO

Openstack CLI

$. Datahub-openrc.sh

$ openstack server list

$ openstack network list

$ openstack help

$ openstack server help

Openstack CLI
$ openstack server create --image "Ubuntu 18.04" --network "internet" --flavor "c1m1" --key-name
"ascii" cli-test
-----------------------------+--+
| Field | Value |
+-----------------------------+--+
created	2019-08-21T12:12:46Z
flavor	c1m1 (dbd3b206-0783-4243-b6fe-1e43d765d633)
hostId	
id	2bdeebae-5c4a-4d35-b42e-fec06c196351
image	Ubuntu 18.04 (18a5fc04-39b0-49b8-ac52-3a572ed1d5c3)
key_name	ascii
name	cli-test
progress	0
project_id	9147fbfe224c4bd4864eec589413c095
properties	
security_groups	name='default'
status	BUILD
updated	2019-08-21T12:12:46Z
user_id	205a3ad1266927448414a68de327c12f35e38bf740d05d4e76353d0d45af4b96
volumes_attached	
+-----------------------------+--+

OPENSTACK CLI ClientS

— Python clients
— Tip: use VirtualEnv

from credentials import get_session
from novaclient.client import Client

session = get_session()
nova_client = Client("2.1", session=session)

worker_name = "dummy"
image = nova_client.images.find(name="Ubuntu 18.04")
flavor = nova_client.flavors.find(name="c1m1")
net = nova_client.networks.find(label="internet")
nics = [{'net-id': net.id}]
instance = nova_client.servers.create(name=worker_name, image=image, flavor=flavor,
key_name="ascii", nics=nics)

Python SDK

$ curl -X POST http://128.136.179.2:5000/v2.0/tokens \
 -H "Content-Type: application/json" \
 -d '{"auth": {"tenantName": "'"$OS_TENANT_NAME"'", \
 ”passwordCredentials": {"username": “'"$OS_USERNAME"'", \
 "password": "'"$OS_PASSWORD"'"}}}' \
 | python -m json.tool

$ curl -H "X-Auth-Token: 558f82170b9b46a8a088019774d382d1" \
 http://94.246.116.200:5000/v2.0/tenants\
 | python -m json.tool

REST from the commandline

http://94.246.116.200:5000/v2.0/tenants%5C

But cloud is more than just a cost
saving business model.

It’s a new way of operating and
designing services.

Automation

Leverage the fact that the infrastructure
is virtual and thus can be programmed.

Infrastructure-as-code

Pets vs Cattle

bob-the-mailserver
sperry-the-fileserver

cluster-server-151
cluster-server-152

— Orchestration is the creation of virtual resources and connecting them together
(sometimes called provisioning).

— Configuration is the process of installing software on the orchestrated nodes and set
parameters, etc.

— Many different tools: Many different tools: Chef, Puppet, Salt, CloudFormation, Heat,
Terraform, Ansible, etc.

— We will use Terraform for orchestration & Ansible for configuration.

Infrastructure-as-Code

— Declarative

— State you desired state, i.e. what
servers should be running and how
they should be connected

— Terraform then calculates a plan (a
DAG) and applies the actions

Terraform

have
server

have
network

set
 SSH-keys

firewall
setting

have disk

use disk

have
router

connect
router

connect

create plan

create
server

create
network

create
SSH-keys

Configure
firewall

Create
disk

Mount
disk

create
router

connect
router

connect
serverDEMO

Terraform

resource "openstack_networking_network_v2" "network" {
 name = "simple-network"
 admin_state_up = "true"
}

resource "openstack_networking_subnet_v2" "subnet" {
 name = "simple-subnet"
 network_id = "${openstack_networking_network_v2.network.id}"
 cidr = "192.168.1.0/24"
}

resource "openstack_networking_router_v2" "router" {
 name = "simple-router"
 admin_state_up = "true"
 external_network_id = "${var.external_network_id}"
}

resource "openstack_networking_router_interface_v2" "router_iface" {
 router_id = "${openstack_networking_router_v2.router.id}"
 subnet_id = "${openstack_networking_subnet_v2.subnet.id}"
}

Syntax

<BLOCK TYPE> "<BLOCK LABEL>" "<BLOCK LABEL>" {
 <IDENTIFIER> = <EXPRESSION>
}

variable "availability_zones" {
 description = "A list of availability zones"
 type = list(string)
}

resource "aws_vpc" "main" {
 cidr_block = "${var.base_cidr_block}"
}

Command line

$ terraform

File
Save as Terraform configurations in files "*.tf"

an example network

Terraform
an example instance

resource "openstack_compute_keypair_v2" "ssh_keypair" {
 name = "simple-keypair"
 public_key = "${chomp(file(var.public_key_path))}"
}

resource "openstack_compute_instance_v2" "server" {
 name = "simple-server"
 image_name = "${var.image}"
 flavor_id = "${var.flavor}"
 key_pair = "${openstack_compute_keypair_v2.ssh_keypair.name}"

 network {
 name = "simple-network"
 }

 resource "openstack_networking_floatingip_v2" "floatingip" {
 pool = "${var.floatingip_pool}"
 }

 security_groups = [
 "${openstack_networking_secgroup_v2.security_group.name}",
 "default",
]
}

Terraform
an example security group

DEMO

resource "openstack_networking_secgroup_v2" "security_group" {
 name = "simple-secgroup"
 description = "Rules for the simple project"
}

resource "openstack_networking_secgroup_rule_v2" "allow_ssh" {
 direction = "ingress"
 ethertype = "IPv4"
 protocol = "tcp"
 port_range_min = "22"
 port_range_max = "22"
 remote_ip_prefix = "0.0.0.0/0"
 security_group_id = "${openstack_networking_secgroup_v2.security_group.id}"
}

Ansible
— Playbooks are the basis in Ansible for configuration management and multi-machine

deployment system
— Each playbook is composed of one or more ‘plays’ in a list.

— The goal of a play is to map a group of hosts to some well-defined roles.,
represented by things ansible calls tasks. At a basic level, a task is nothing more
than a call to an ansible module.

— By composing a playbook of multiple ‘plays’, it is possible to orchestrate multi-machine
deployments, running certain steps on all machines in the webservers group (role),
then certain steps on the database server group, then more commands back on the
webservers group, etc.

— “plays” are more or less a sports analogy. You can have quite a lot of plays that affect
your systems to do different things. It’s not as if you were just defining one particular
state or model, and you can run different plays at different times.

ansible all --private-key=mykey.key --inventory-file hosts.ini -m ping -u ubuntu

Ansible

- hosts: webservers
 remote_user: root

 tasks:
 - name: ensure apache is at the latest version
 yum:
 name: httpd
 state: latest
 - name: write the apache config file
 template:
 src: /srv/httpd.j2
 dest: /etc/httpd.conf

- hosts: databases
 remote_user: root

 tasks:
 - name: ensure postgresql is at the latest version
 yum:
 name: postgresql
 state: latest
 - name: ensure that postgresql is started
 service:
 name: postgresql
 state: started

A simple playbook

ansible-playbook -i hosts site.yml

[webservers]
113.56.188.22
www1.ericsson.net

[databases]
136.241.4.34
db1.lu.se

Inventory

Ansible

 name: template configuration file
 template:
 src: template.j2
 dest: /etc/foo.conf
 notify:
 - restart memcached
 - restart apache

 handlers:
 - name: restart memcached
 service:
 name: memcached
 state: restarted
 - name: restart apache
 service:
 name: apache
 state: restarted

ansible-playbook -i hosts site.yml

templates, notifications and handlers

Assignment #1A
Implement a visitor counter service. Use Horizon and the CLI

Web Server

Object Store

counter

.Internet

— Create virtual infrastructure by clicking in the GUI

— Install the OpenStack command-line tools and learn how use (list servers, start servers, list objects
in Swift, upload and download objects)

— Implement a very simple web server that reads and writes from persistent storage provided by
OpenStack

— Show that it is possible to add and remove web servers and maintain a consistent behaviour for
the visitor counter

Assignment #1A
Implement a visitor counter service. Use Horizon and the CLI

Assignment #1B
Implement a visitor counter service. Use Terraform and maybe a bit of Ansible

Web Server

Object Store

counter

.Internet

— Same as in 1A, but using Terraform.

— You may reuse the VM server image from 1A or use Ansible for configuration.

