
Slide title
70 pt

CAPITALS

Slide subtitle

Cloud Computing
#2a - Virtualisation and Networking

Ericsson Internal | 2018-02-21

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Virtualisation layer

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Hardware

Virtual machine #1 Virtual machine #2 Virtual machine #3

Network virtualisation

Storage virtualisation

Physical machine

Operating system

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Virtualisation layer

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Hardware

Virtual machine #1 Virtual machine #2 Virtual machine #3

Operating system

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Virtualisation layer

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

A
p
p

Operating System

A
p
p

A
p
p

A
p
p

Hardware

Virtual machine #1 Virtual machine #2 Virtual machine #3

Operating system

Physical machine Physical machine

Ericsson Internal | 2018-02-21

Cloud Motives

— Server Consolidation

— Improve utilisation (possible to overcommit)

— Significant cost savings (equipment, space, power)

— Simplified Management

— Datacenter provisioning and monitoring

— Dynamic load balancing

— Migration (dead or alive)

— Improved Availability

— Checkpointing

— Fault tolerance

— Disaster recovery

— Replication

— Security

— Isolation

— Convenient for users

Ericsson Internal | 2018-02-21

Yesterday’s News
— Classical VMM

— IBM S/360, IBM VM/370

— Co-designed proprietary hardware, OS,
VMM

— Applications
— Timeshare several single-user OS

instances on expensive hardware

— Compatibility

From IBM VM/370 product announcement, ca. 1972

Ericsson Internal | 2018-02-21

Original Motives ‘65

— Multiprogramming

— Multiple single application VMs

— Multiple secure environments

— Managed application environments

— Mixed OS environments

—Legacy applications

—New systems transitions

—Software development

—OS training

—Help desk support

—Operating system instrumentation

—Event monitoring

—Check pointing

Ericsson Internal | 2018-02-21

Popek & Goldberg ‘74

host

guest

Formally, virtualization involves the construction of an
isomorphism that maps a virtual guest system to a real host

Hypervisor

Ericsson Internal | 2018-02-21

guest host

existence of map & instruction sequences such that:

state mapping

instruction
sequence

Popek & Goldberg ‘74

Ericsson Internal | 2018-02-21

Virtual disk

The function f()

guest

host

guest
write
operation

host
write
operation

Virtualization differs from abstraction in
that virtualization does not necessarily
hide details; the level of detail in a
virtual system is often the same as that
in the underlying real system.

Ericsson Internal | 2018-02-21

CPU virtualisation
Popek & Goldberg '74

— Three types of instructions

— Control sensitive

— Change the configuration of resources

— Load PSW, Set CPU Timer (S/370)
— Behavior sensitive

— Depend on the configuration of resources

— Load Real Address (S/370), Pop Stack into Flags Register (IA-32) 

— Innocuous

— The rest (klabbet)

Ericsson Internal | 2018-02-21

CPU virtualisation
Popek & Goldberg '74

Ericsson Internal | 2018-02-21

CPU virtualisation
Popek & Goldberg '74

— A VMM must satisfy three properties

— Efficiency implies that all instructions that are innocuous must be
executed natively on the hardware, with no intervention or
emulation by the VMM.

— Resource control implies that it should not be possible for guest
software to directly change the configuration of any system
resources available to it, e.g., real memory. The allocator must be
invoked if the guest software makes any such attempt.

— Equivalence implies that any program executing on a virtual
machine must behave in a manner identical to the way it would
have behaved when running directly on the native hardware, with
only a few exceptions.

Ericsson Internal | 2018-02-21

Virtualization Approaches

— Trap-and-emulate
— Binary translation
— Paravirtualization
— Hardware-assisted Virtualization

Ericsson Internal | 2018-02-21

CPU virtualisation
Privileged instructions vs user instructions

App App

Libraries

Hardware

Operating System (kernel)

AppApp

ring 1

ring 3

ring 2

ring 0
kernel

drivers

drivers

apps

Most privileged
(System mode)

Least privileged
(User mode)

Physical machine

Ericsson Internal | 2018-02-21

Virtual State

Ericsson Internal | 2018-02-21

CPU virtualisation
Privileged instructions vs user instructions

App App

Libraries

Operating System (kernel)

AppApp

Virtual machine#1 (guest)

App App

Libraries

Operating System (kernel)

AppApp

App
VM#1

Hardware

Operating System (kernel)

Physical machine (host)

Virtual machine#2 (guest)

App
VM#2

ring 1

ring 3

ring 2

ring 0
kernel

drivers

drivers

apps

Hypervisor/VMM

Most privileged
(System mode)

Least privileged
(User mode)

De-privileging - Run guest OS
in unprivileged mode

Ericsson Internal | 2018-02-21

CPU virtualisation

App App

Libraries

Operating System (kernel)

AppApp

Virtual machine#1 (guest)

App App

Libraries

Operating System (kernel)

AppApp

App
VM#1

Libraries

Hardware

Operating System (kernel)

Physical machine (host)

Virtual machine#2 (guest)

App
VM#2

Hypervisor/VMM

— The guest is typically just another user-level
process (application)

— Facilitates processor sharing using standard
operating system scheduling

— This allows for cloud providers to do
overcommit, i.e. sell more compute power than
is actually available.
— Bet on that not everyone is running at the

same time.

Ericsson Internal | 2018-02-21

CPU virtualisation
Trap and emulate

Virtual machine

code

privileged
instruction trap

Physical machine

Libraries

Hardware

Operating System (kernel)

Hypervisor/VMM

Emulate changes

continue— Privileged instructions trap, and VMM
emulates

— E.g., movl %eax, %cr3 ; invalidate the TLB

— Traps into VMM so the effect can be emulated

— Execute guest instructions on real CPU
when possible

— E.g., addl %eax, %ex

Ericsson Internal | 2018-02-21

CPU virtualisation
Trap and emulate

— VMM has three parts

— Dispatcher

— Allocater

— Interpretor routines

Ericsson Internal | 2018-02-21

— Interpret the binary code

— Replace privileged instructions

— Avoids traps, which can be expensive

— Most instructions remain identical, except control flow
(calls, jumps, branches, ret, etc.), and privileged
instructions

— Dynamic or static

— Use cache to speed up

— Popularised by VMWare on x86

CPU virtualisation
Binary translation

Guest code Translated code

Ericsson Internal | 2018-02-21

CPU virtualisation
Paravirtualisation

— OS or system devices are virtualization aware

— Requires recompilation of the OS

— Guest applications unaffected

— In general good performance

—Popularised by XEN for x86

Physical
machine

(host)

Virtual
machine
(guest)

App

Operating System (kernel)

Hardware

App

Operating System (kernel)

Hardware

App

Operating System (kernel)

Hardware

VMM/Hypervisor

Knows about

No virtualisation Normal
virtualisation

Para virtualisation

VMM/Hypervisor

Knows
 about

Knows about

Ericsson Internal | 2018-02-21

Memory virtualisation
Virtual Memory 101

— Each process has its own space (usually
starting at 0x0)

— The page table keeps map of virtual memory to
physical memory

— TBL is the page mapping cache

— Virtual memory enables memory isolation
between user processes

page table

Virtual memory

Physical memory

Process Process

Disk

swap

0x0 0x0

Ericsson Internal | 2018-02-21

Memory virtualisation
When virtual memory is virtually virtualised

Virtual machine #2Virtual machine #1

Physical machine

Virtual memory

Physical memory

page table

Virtual memory

Physical memory

page table

page table

Ericsson Internal | 2018-02-21

Memory virtualisation
When virtual memory is virtually virtualised

Virtual machine #2Virtual machine #1

Physical machine

Virtual memory

Real memory

page table

Physical memory

page tablepage table

Ericsson Internal | 2018-02-21

Memory virtualisation
When virtual memory is virtually virtualised

Ericsson Internal | 2018-02-21

Memory virtualisation
When virtual memory is virtually virtualised

shadow page table

Virtual machine #2Virtual machine #1

Physical machine

Virtual memory

Real memory

page table

Physical memory

page tablepage table

Ericsson Internal | 2018-02-21

Ericsson Internal | 2018-02-21

Virtualization Interfaces

ISA = Instruction Set Architecture
 3 = System ISA (Privileged calls)
 4 = User ISA (User level calls)
ABI = Application Binary Interface

API = Application Programming Interface

Until now we have looked at system level
virtualisation, i.e. the whole machine is
virtualised.

But that is not the only option!

Ericsson Internal | 2018-02-21

Ericsson Internal | 2018-02-21

App

Operating System (kernel)

Hardware

VMM/Hypervisor

Hardware

Operating system

VMM/Hypervisr

Type 1 hypervisor
bare metal

App

Operating System (kernel)

Type 2 hypervisor
hosted

Ericsson Internal | 2018-02-21

System VM vs Process VM

App

Operating System (kernel)

Hardware

Virtualising software

Virtual
machine
(guest)

Physical
machine

(host)

App

Hardware

Operating system

Virtualising software

System
virtual

machine

Process
virtual

machine

Until now we have looked at system level
virtualisation, i.e. the whole machine is
virtualised.

But that is not the only option!

Ericsson Internal | 2018-02-21

LXC - Linux Containers

— Lightweight process level virtualization
— No VM (or VMM/hypervisor), just a Linux process
— A user space interface for the Linux kernel containment features:

— Kernel namespaces, Apparmor/SELinux, Seccomp, Chroots, Kernel capabilities, cgroups
— Multiple containers share the same kernel
— A long story...

— Chroot (1979) – change root directory for a running process, along with children → segregate
and isolate processes, protecting global environment

— Jails – additional process sandboxing features for isolating filesystems, users, networks (limiting
apps in their functionality)

— Solaris Zones – full application environments, with full user, process and filesystem space
— Cgroups(2006) – process containers designed for isolating and limiting the resource usage of a

process

Ericsson Internal | 2018-02-21

Enter Docker Containers

Name borrowed from the shipping industry,
hence the aquatic theme.

Portability - can be used on any of supported
types of ships

Wide variety of cargo that can be packed
inside

Standard sizes - standard fittings on ships

Many containers on a ship

Isolates cargo from each other

— A user-space process (LXC)
— Isolation based on Linux process mechanisms
— Each container has its own network stack and file

system
— Share kernel with host
— Containers can be stopped, paused, restarted

Ericsson Internal | 2018-02-21

What does Docker offer?

• A simple way to pack code and dependencies together

• Apps that can run anywhere

• Low overhead

• A complete ecosystem for sharing images

Ericsson Internal | 2018-02-21

Docker Containers

— Each container is built from a Docker image.
— Images are read-only
— Union mount merges the images together with a

writable top layer
— Copy-on-write

— Docker registries to store and publish images
— DockerHub, etc.
— Tons of applications ready for download

— Docker images are built in an hierarchical fashion, which
facilitates collaboration and innovation

— Fast to start and stop

— Runs equally well on your laptop and in the cloud

— Solves the dependency mess

Ericsson Internal | 2018-02-21

Docker Files
A recipe for building images

Easy to create repeatable environments
Fits well into the automation workflow

Ericsson Internal | 2018-02-21

Using Docker
 $ docker run -it ubuntu /bin/bash
 $ docker create -t -i fedora bash
 6d8af538ec541dd581ebc2a24153a28329acb5268abe5ef868c1f1a261221752

 $ docker start -a -i 6d8af538ec5
 bash-4.2#

 $ docker stop <container>
 $ docker pause <container>
 $ docker restart <container>
 $ docker rm <container>

 $ docker run -v /host/directory:/container/directory -it ubuntu /bin/bash
 $ docker run -v /Users/ejoheke/:/my-host -it ubuntu /bin/bash

 $ docker ps
 $ docker ps --all
 $ docker images
 $ docker rmi $(docker images -q)
 $ docker stop $(docker ps -q)
 $ docker rm $(docker ps --all -q)

Ericsson Internal | 2018-02-21

Docker vs VMs
— Virtual machines have their own complete guest OS.

— Separate kernels. Takes time to boot.
— A small application we want to run quickly adds

up to much data.
— Consumes host resources
— Thorough isolation

— Docker
— Shares kernel with host OS.
— Runs as a process inside the host.
— Only applications and its dependencies.
— Efficiency, better reuse of host OS resources
— Docker contains OS, but runs natively
— Less isolation

Ericsson Internal | 2018-02-21

Performance

IBM Research, An Updated Performance Comparison of Virtual Machines and Linux Containers, 2014-07-21, http://
domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/ $File/rc25482.pdf

Storage Networking

Ericsson Internal | 2018-02-21

Containers empowering microservices

Quicker start times simplified both prototyping and auto-scaling

Allow work to be done independently on modules and facilitates independent
releases for components

Isolated and abstracted runtime environments, that can be tailored for each module

Shared runtime environment, for heterogenous applications

Ericsson Internal | 2018-02-21

Unikernels

The goal of mirageoS is to
restructure entire Vms—
including 
all kernel and user-space
code— into more modular
components that
areflexible,secure, and
reusable in
the style of a library
operatingsystem.

Ericsson Internal | 2018-02-21

GPU virtualisation

Remark:
GPUs can only be used within
the node they are attached to

Basic behavior of CUDA

GPU

Basics of GPU computing

F. Silla @ High Performance Container Workshop - ISC 2018

Ericsson Internal | 2018-02-21

F. Silla @ High Performance Container Workshop - ISC 2018

Are we making good use of GPUs?GPU utilisation often becomes an issue

Ericsson Internal | 2018-02-21

GPU virtualisation

Ericsson Internal | 2018-02-21

GPU virtualisation

Ericsson Internal | 2018-02-21

A different approach: remote GPU virtualization

F. Silla @ High Performance Container Workshop - ISC 2018

No GPU

Remote GPU virtualisation

Ericsson Internal | 2018-02-21

Access to remote GPU is
transparent to applications:

no source code
modification is needed

Basics or rCUDA

rCUDA is a development by Universitat Politècnica de València

Ericsson Internal | 2018-02-21

FPGA virtualisation

Ericsson Internal | 2018-02-21

FPGA virtualisation

Fahmy et al., "Virtualized FPGA Accelerators for Efficient Cloud Computing", IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), 2015

Ericsson Internal | 2018-02-21

Storage virtualisation
Block storage (virtual hard disk)

Works just like a regular disk.

Partition, format, mount

Performance is an issue

App App

Libraries

File system

Operating System (ABI)

AppApp

Block device driver

Virtual machine

Libraries

File system

Operating System (ABI)

Block device driver

Physical machine

Hypervisor

App
VM#1

Disk

Ericsson Internal | 2018-02-21

Storage virtualisation
Remote block storage (virtual hard disk)

Still works just like a regular disk

Performance is an issue. Latency and throughput bounded by network

App App

Libraries

File system

Operating System (ABI)

AppApp

Block device driver

Virtual machine

Libraries

NIC

Operating System (ABI)

Physical machine (compute node)

Hypervisor

App
VM#1

Network

Libraries

NIC

Operating System (ABI)

Physical machine (storage node)

DiskBoot disk

Slide title
70 pt

CAPITALS

Slide subtitle

Cloud Native
#2b - Networking

OSI Model

TCP, UDP

IP

Ethernet,
 token ring

HTTP, FTP

Source: Optimizing Network Performance with Content Switching: Server, Firewall, and By Matthew Syme, Philip Goldie

1000BaseT

Networking 101
The stack

Network virtualisation

Libraries

Operating System (kernel)

App

Virtual machine#1

Libraries

Operating System (kernel)

AppApp

Virtual machine#3

Virtual network (10.0.0.0/24)

10.0.0.12
00:1a:2c:2F:32:d1

10.0.0.27
01:2c:1a:4b:12:c2

Libraries

Operating System (kernel)

App

Virtual machine#1

Libraries

Operating System (kernel)

AppApp

Virtual machine#3

Virtual network (10.0.0.0/24)

S-MAC: 00:1A:2C:2F:32:D1
D-MAC: 01:2C:1A:4B:12:C2
S-IP: 10.0.0.12
D-IP: 10.0.0.27

<PAYLOAD>

10.0.0.12
00:1a:2c:2F:32:d1

10.0.0.27
01:2c:1a:4b:12:c2

Network virtualisation

Network virtualisation
Turtles all the way down

Host

Guest

Network

Libraries

Operating System (kernel)

Virtual machine#1

App

Libraries

Operating System (kernel)

App
VM#1

Physical machine (host)

Virtual machine#2

App
VM#2

Libraries

Operating System (kernel)

App

Virtual machine#3

App

Libraries

Operating System (kernel)

App

App
VM#1

Physical machine (host)

Virtual machine#4

App
VM#2

NIC NIC

Network

Router

BridgeBridge

Bridge

Open vSwitch (OVS)

BridgeBridge

Open vSwitch (OVS)

Bridge

App App

Virtual network (10.0.0.0/24)

10.0.0.12
00:1a:2c:2F:32:d1

10.0.0.27
01:2c:1a:4b:12:c2

S-MAC: b6:00:59:58:f1:06
D-MAC: a2:1b:99:b0:8b:ff
S-IP: 100.93.56.216
D-IP: 100.93.56.112

S-MAC: 00:1a:2c:2f:32:d1
D-MAC: 01:2c:1A:4b:12:c2
S-IP: 10.0.0.12
D-IP: 10.0.0.27

<PAYLOAD>

100.93.56.216
b6:00:59:58:f1:06

100.93.56.112
a2:1b:99:b0:8b:ff

Network virtualisation

Tunneling
— Provides a network service that the underlying network cannot provide.

— IPv6 over IPv4

— VPN - Virtual Private Network, provide secure access to a network using non-secure networks. Uses IPSec
“encrypt an IP datagram and put it in an IP datagram”

— Usually violates the OSI model, i.e., the layer m payload contains layer n<m protocol data.

— Communication between data centers typically over tunnels.

— VXLAN

— VLAN on steroids.

— Addresses scalability problem of layer-2 networks.

— Allows 2^24 logical networks. Identified by VXLAN Network Identifier (VNI).

— Encapsulates layer-2 frame in UDP datagram. Layer 2 on top of layer 3!

— Connect separate layer-2 domains to create one domain.

— Machines are identified uniquely by the combination of their MAC address and VNI.

— VXLAN Tunnel End Points (VTEP) encapsulate/decapsulate layer-2 frames.

Cloud Networking

— Dynamics
—mobility, migration of VMs
—short lived services
—on demand scaling

— Scaling
—many VMs on many hosts

— Isolation
—tenants sharing the same physical resource

— Traffic
—North-south/East-west
—Not always on physical links

—Make DNS a bit more complicated (and important)

The Two Networking “Planes”

Data plane: processing and delivery of packets with local forwarding
state

Forwarding state + packet header -> forwarding decision

Control plane: compute the forwarding state in switches/routers
Determines how and where packets are forwarded

Network of Switches and/or Routers

�60

Distributed	algorithm	running	between	neighbors
Complicated	task-specific	distributed	algorithm

Traditional Control Mechanisms

Network	OS	(e.g.	NOX)

SDN is “Layers” for Control Plane

Global Network View

Control Program

routing, access control, etc.

Forwarding Model

SDN
Software Defined Networking

— Introduces a centralized control
plance

— Networks are hard to manage
(=>expensive)

— Computation and storage have
been virtualized

— Networks are hard to evolve
— Simplify the hardware nodes

Assignment #2

VM

VM

.Internet

Docker

Docker

Docker

Docker

VM

VM

Volume

Bonus assignment on SDN for the brave...

fin

