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Lecture 0

Course contents
Some math background

Vector spaces and mappings
Matrix theory
Norms

Material:

Lecture slides

R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge
University Press, 2013.
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Linear Systems, 2019

Introduction

Multivariable Time-varying Systems

Transition Matrices

Controllability and Observability

Realization Theory

Stability Theory

Linear Feedback

Multivariable input/output descriptions

Some Bonus Material
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Linear Systems, 2019

Rugh, Linear System Theory, 2nd edition

Most of 1-7,9-12,13-14

Scan 15,20-23,25-29

Skip 8,16-19, 24

J. P. Hespanha, Linear Systems Theory. Princeton University Press.
2009.
Some more handouts
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Course Contents

Credits: 9hp

8 Lectures (including this intro)

8 Exercise sessions (1st one on Friday, this week)

8 Handins (7 best counts). Strict deadlines!

24 hour take-home exam (date tbd: Mid-Dec 2019)
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Vector spaces

A set of elements {vk}nk=1 in a vector space V over field F is:

linearly independent, if
∑n
k=1 αkvk = 0 =⇒ αk = 0, ∀k.

{vk}nk=1 forms a basis for V .

If {vk}nk=1 exists for finite n, V is finite-dimensional. Otherwise, V
is infinite dimensional.

A subset U of a vector space V is called a subspace if

au1 + bu2,∀u1, u2 ∈ U , and a, b ∈ F.

6 / 25



LionSealWhite

Mappings

A functional mapping A from subspace U into a vector spaceW is
done by associating each u ∈ U with a single w ∈ W . Usually
denoted by u 7→ w = Au.

w is the range (image) of u under A. The subspace is the domain,
denoted by dom(A). The range of A is the set of all images

range(A) := {w ∈ W : w = Au, u ∈ dom(A)}.

The inverse image w0 ∈ W is the set of all u ∈ dom(A) such that
w0 = Au. We obtain the inverse map of A by associating each
w ∈ range(A) with its inverse image.

A functional mapping A : U → W is injective (one-to-one) if, for every
u1, u2 ∈ dom(A), u1 6= u2 ⇒ Au1 6= Au2. It is surjective if
range(A) =W , and bijective if both.
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Matrix representation of mappings

Given two vector spaces V andW over F, a mapping A : V → W is
linear if

A(av + bu) = aAv + bAu, ∀u, v ∈ V, and a, b ∈ F.

Let {vk}nk=1 and {wk}mk=1 be bases for V andW , respectively. For
each basis vector vk, let {a1k, a2k, . . . , amk} be the unique scalars
satisfying

Avk = a1kw1 + · · ·+ amkwm.

The mn scalars alk ∈ F completely characterises the map A. (why?)
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Matrix representation of mappings

Let {vk}nk=1 and {wk}mk=1 be bases for V andW , respectively. For
each basis vector vk, let {a1k, a2k, . . . , amk} be the unique scalars
satisfying

Avk = a1kw1 + · · ·+ amkwm.

The mn scalars alk ∈ F completely characterises the map A. Given
any v = α1v1 + · · ·+ αnvn and let w = Av = β1w1 + · · ·+ βnwn,
by linearity we obtain β1

...
βm

 =

 a11 . . . a1n
...

. . .
...

am1 . . . amn


 α1

...
αn

 .

The matrix [ajk] ∈ Fm×n is the matrix representation of the linear map
A w.r.t. the input basis {vk}nk=1 and output basis {wk}mk=1.
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Matrix Theory

Definition and standard rules

det(A) =
∑
i aijcij =

∑
j aijcij

cofactors cij = (−1)i+j det(A′) (delete row i and col j)

adj(A) = CT

det(AB) = det(A) det(B), tr(AB) = tr(BA)

(AB)−1 = B−1A−1 and (AB)T = BTAT

A adj(A) = det(A)I , so A−1 = adj(A)
det(A)

d
dt(AB) = dA

dt B +AdB
dt
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Eigenvalues

Av = λv

Characteristic equation p(λ) = det(λI −A) = 0

Geometric multiplicity ≤ Algebraic multiplicity

If AT = A then eigenvalues are real and there are n orthogonal
eigenvectors: A = V ΛV T with V TV = I

General A: Jordan normal form

A = V blockdiag (Ji)V −1 where Ji =


λi 1

. . . 1
λi

.

Number of Jordan blocks Ji = total number of independent
eigenvectors of A.
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Singular Value Decomposition etc

If A ∈ Rm×n then

A = U

Σ 0
0 0

V T

where U ∈ Rm×m, V ∈ Rn×n orthogonal (i.e. UUT = I and
V V T = I) and

Σ = diag(σ1, . . . , σr) > 0, where σi is the square-root of an
eigenvalue of AAT .

A symmetric =⇒ A = UΣUT .
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Geometric View

A =
U1 . . . Ur . . . Um

Σ 0
0 0




V T
1
...
V T
r
...
V T
n


Null space (kernel) null(A) := {x | Ax = 0}

Range space (image) range(A) := {y | y = Ax for some x}

Rn = range(AT )︸ ︷︷ ︸
spanned by V1...Vr

⊕ null(A)︸ ︷︷ ︸
spanned by Vr+1...Vn

Rm = range(A)︸ ︷︷ ︸
spanned by U1...Ur

⊕ null(AT )︸ ︷︷ ︸
spanned by Ur+1...Um
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Computation of eAt

Definition: eAt =
∞∑
k=0

1
k!(At)

k. Satisfies dX
dt = AX .

d
dte

At = AeAt = eAtA

If A = V ΛV T then eAt = V diag(eλit)V T

If A = V blockdiag (Ji)V −1 then
eAt = V blockdiag (eJit)V −1

where eJit =


eλit teλit . . . tni−1

(ni−1)!e
λit

. . . . . .
eλit teλit

eλit


Laplace-transform L(eAt) = (sI −A)−1

e(A+B)t = eAteBt for all t⇔ AB = BA. Note: In general,
eAteBt 6= e(A+B)t.
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Quadratic Forms xTAx

Let’s assume AT = A (note that xTAx = xT (A+AT )x/2)

Positive semi-definite: A � 0 ⇔ xTAx ≥ 0,∀x

Positive definite: A � 0 ⇔ xTAx > 0, ∀x 6= 0

We say that A � B iff A−B � 0.

Courant-Fisher formulas when AT = A:

λmax(A) = max
x 6=0

xTAx
xT x

= max
xT x=1

xTAx

λmin(A) = min
x 6=0

xTAx
xT x

= min
xT x=1

xTAx

λmin(A)I � A � λmax(A)I

A � 0⇔ λi(A) > 0,∀i
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Norms

A norm is a real-valued function satisfying

‖x‖ ≥ 0, with equality iff x = 0 (1)

‖αx‖ = |α|‖x‖ (2)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (3)

Some vector norms on Rn

‖x‖1 =
∑
|xi|

‖x‖2 =
(∑

|xi|2
)1/2

‖x‖∞ = max |xi|

‖x‖p =
(∑

|xi|p
)1/p

, 1 ≤ p ≤ ∞

How about 0 < p < 1?

16 / 25



LionSealWhite

Norms: why are they useful?

A sequence {vk}nk=1 in a normed vector space V is said to converge,
if ∃v ∈ V such that

‖v − vk‖V → 0, as k →∞.

If such a v exists, it is unique.

Note that norms quantify the ‘closeness’ of two elements in a vector
space, as we have seen above, i.e. converts convergence of {vk}∞k=0
to a vector v to convergence of {‖v − vk‖}∞k=0 to 0!

Equivalence of norms (in finite-dimensional vector space V ): given
two norms ‖ · ‖a and ‖ · ‖b, there exists a pair of real numbers
0 < C1 ≤ C2 such that, for all x ∈ V it holds:
C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a.
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Signal Norms

‖f‖p =
(∫ ∞
−∞
|f(t)|pdt

)1/p

For p = 2, called ”signal-energy”

Lp(I) denotes functions with
∫
I |f(t)|pdt <∞
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Matrix Norms

A matrix norm is a function satisfying (1)-(3) above

Examples: (induced matrix norms)

‖A‖α,β = sup
x 6=0

‖Ax‖β
‖x‖α

Induced 2-norm

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

= σmax(A)

This is often the ”default-norm”.
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Submultiplicative Matrix Norms

If the norm also satisfies ‖AB‖ ≤ ‖A‖‖B‖, it is called
submultiplicative.

All induced matrix norms are submultiplicative.

Frobenius-norm or Hilbert-Schmidt norm (submultiplicative, but not an
induced norm)

‖A‖F =

∑
i,j

|aij |2
1/2

=
(
Trace(ATA)

)1/2
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Scalar Products (Inner Products)

A scalar product 〈·, ·〉 V × V 7→ C satisfies

Positive definite 〈x, x〉 ≥ 0 with equality iff x = 0
Conjugate symmetric 〈x, y〉 = 〈y, x〉

Linearity 〈x, λ1y1 + λ2y2〉 = λ1〈x, y1〉+ λ2〈x, y2〉

Examples

〈x, y〉 = x∗y

〈X,Y 〉 = Trace(X∗Y )

〈x(t), y(t)〉 =
∫
x(t)∗y(t)dt
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Scalar Products (Inner Products)

A vector space V equipped with a scalar product is called a scalar
product (inner product) space.

We say that x and y are orthogonal, denoted x ⊥ y if 〈x, y〉 = 0

For subspace: X ⊥ Y means that x ⊥ y,∀x ∈ X, y ∈ Y

Example: cos t is orthogonal to sin t in V = L2([−π, π])

Cauchy-Schwarz’ inequality:

n∑
i=1
|xiyi| = 〈x, y〉 ≤ ‖x‖2‖y‖2

(with equality if and only if x and y are proportional)
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Why are these concepts useful?

In this course, we use vector spaces equipped with an inner product
and corresponding norm. All these vector spaces have an additional
property which is useful in the study of sequence in the vector space
(recall why a norm is useful).

A sequence {vk}∞k=0 in a normed vector space V is Cauchy, if for any
ε > 0, there exists N(ε) such that

‖vk − vm‖V < ε, ∀k,m ≥ N(ε).

Note: Every convergent sequence is Cauchy, but not necessarily the
converse.
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Why are these concepts useful?

A normed vector space + every Cauchy sequence is convergent is
called complete and known as a Banach space.

A Banach space + scalar product is called a Hilbert space.

In a complete vector space, it is possible to check whether a sequence
is convergent by checking if it is Cauchy.

We can consider the modelling of a system in terms of mappings
between signal vector spaces. In this course, we deal with mappings
between Banach spaces.
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Tools

Make sure you know how to simulate an ordinary differential system in
e.g. Matlab/Simulink or Maple

You should also be familiar with using some symbolic manipulation
program such as Matlab or Maple

You should be able to use the Control System Toolbox (or similar)
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